

EMC TEST REPORT

Test report

On Behalf of

Xinguang Computer Parts Factory, Guanhaiwei Town, Cixi City

For

Luminous mouse pad

Model No.: N/A

Serial Model: N/A

Prepared for

Xinguang Computer Parts Factory, Guanhaiwei Town, Cixi City Xiaotuanpu Village, Guanhaiwei Town, Cixi City, Zhejiang Province

Prepared by

Shenzhen CTB Testing Technology Co., Ltd.

Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Street, Baoan District, Shenzhen China

TEST RESULT CERTIFICATION

Applicant's name......: Xinguang Computer Parts Factory, Guanhaiwei Town, Cixi City

Address...... Xiaotuanpu Village, Guanhaiwei Town, Cixi City,

Zhejiang Province

Manufacture's Name.....: Xinguang Computer Parts Factory, Guanhaiwei Town, Cixi City

Address...... Xiaotuanpu Village, Guanhaiwei Town, Cixi City,

Zhejiang Province

Product description

Product name.....: Luminous mouse pad

Trade Mark.....: N/A

Model and/or type reference .: N/A

Standards..... EN 55032:2015, EN 55035: 2017

This device described above has been tested by Shenzhen CTB Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is compliance with the 2014/30/EU directive and its amendment requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of CTB, this document may be altered or revised by Shenzhen CTB Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test.....

Date (s) of performance of tests.......... Jun. 03, 2019 ~ Jun. 11, 2019

Test Result..... : Pass

Producer: Amy Yang , Date: Jun. 11, 2019

Amy Yang / Engineer

Signatory: Date: Jun. 11, 2019

Contents

	STRESULT CERTIFICATION	
1.	DESCRIPTION OF VERSION	4
2.	Test SummaryGENERAL INFORMATION	5
3.	GENERAL INFORMATION	6
	3.1. Description of EUT	6
	3.2. Block diagram of EUT configuration	6
	3.3. Operating condition of EUT	7
	3.4. Test conditions	7
	3.5. Performance criterion	8
	3.6. Measurement uncertainty	8
4.	List of Test and Measurement Instruments	9
	4.1. Radiated Emission Measurement	9
	4.2. Electrostatic Discharge Test	9
	4.3. RF electromagnetic field Test	9
5.	Mains terminal disturbance voltage	10
	5.1. Block diagram of test setup	10
	5.2. Limit	10
	5.3. EUT configuration on test	10
	5.4. Operating condition of EUT	10
	5.5. Test procedure	10
	5.6. Test results	10
6.	Conducted common mode (asymmetric mode) disturbance	13
	6.1. Block diagram of test setup	13
	6.2. Limit	13
	6.3. EUT configuration on test	13
	6.4. Operating condition of EUT	13
	6.5. Test procedure	13
	6.6. Test results	13
7.	Radiated emissions at frequencies up to 1 GHz	14
	7.1. Block diagram of test setup	14
	7.2. Limit	14
	7.3. EUT configuration on test	14
	7.3. EUT configuration on test	14
	7.5. Test procedure	14
	7.6. Test results	14
8.	Radiated emissions at frequencies above 1 GHz	17
	8.1. Block diagram of test setup	17
	8.2. Limit	17
	8.3. EUT configuration on test	17
	8.4. Operating condition of EUT	17
	8.5. Test procedure	17
	8.6. Test results	17
9.	Electrostatic discharges (ESD)	18
	9.1. Block diagram of ESD test setup	18
	9.2. Test standard and Levels and Performance Criterion	18
	9.3. EUT configuration on test	18
	9.3. EUT configuration on test	18
	9.5. Test procedure	18
	9.6. Test results	19
10.	Continuous RF electromagnetic field disturbances	20
	10.1. Block diagram of R/Š test setup	20
	10.2. Test standard and Levels and Performance Criterion	20
	10.3. Operating condition of EUT	20
	10.4. Test procedure	20
	10.5. Test results	20
11.	Photographs of test setup.	
12.	Photographs of EUT	23
	U 1	

1. DESCRIPTION OF VERSION

Edition No.	Date of Revision	Revision Summary	Report Number
0	Jun. 11, 2019	Original Report	CTB190610019EX

2. Test Summary

EN 55032:2015	
Requirement - Test	Result
Classification Class (A or B)	В
Mains terminal disturbance voltage	Р
Conducted common mode (asymmetric mode) disturbance	N/A
Radiated emissions at frequencies up to 1 GHz	Р
Radiated emissions at frequencies above 1 GHz	N/A
EN 61000-3-2:2014	
Requirement - Test	Result
Harmonic current emissions	N/A
EN 61000-3-3:2013	
Requirement - Test	Result
Voltage Fluctuations and Flicker	N/A
EN 55035:2017	
Requirement - Test	Result
Electrostatic discharges (ESD)	Р
Continuous RF electromagnetic field disturbances	Р
Continuous induced RF disturbances	N/A
Power frequency magnetic field	N/A
Electrical fast transients/burst (EFT/B)	N/A
Surges	N/A
Voltage dips and interruptions	N/A
Broadband impulsive conducted disturbances	N/A

Possible test case verdicts:

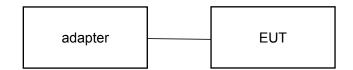
- test case does not apply to the test object: N/A
- test object does meet the requirement: P(Pass)
- test object does not meet the requirement: F(Fail)

Remark: The test was carried out in all the test modes, only the worst data are list in report.

3. GENERAL INFORMATION

3.1. Description of EUT

. n. Becomption of Eq.				
Equipment	Luminous mouse pad			
Trade Mark	N/A			
Model Name	N/A			
Serial No.	N/A			
Model Difference	ce N/A			
Normal Voltage	e 5V 100mA			
Normal Testing Voltage	DC5V			
Highest internal frequency (F _x)	$ F_{x}$ ≤ 108 MHz $ 108$ MHz < F_{x} ≤ 500 MHz $ 500$ MHz < F_{x} ≤ 1 GHz $ F_{x}$ > 1 GHz			
Configuration	☑ Table-top☐ Floor-standing			
Accessory Device	Adapter			


Note:

1. The EUT uses following adapter

	O
Adapter	1
Manufacturer	HUAWEI
Model	HW-059200CHQ
AC Input Power	230V/50Hz
DC Output Power	5V===2A
Plug Type	EU
Power Cord	USB cable unshield(0.8m)

Note: For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.2. Block diagram of EUT configuration

3.3. Operating condition of EUT

Test mode	Description
1	Working

3.4. Test conditions

Temperature: 15-35°C

Relative Humidity: 30-60 %

Atmospheric pressure: 800hPa-1060hPa

3.5. Performance criterion

Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

3.6. Measurement uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test	Parameters	Expanded Uncertainty (U _{Lab})	Expanded Uncertainty (U _{Cispr})
Conducted Emission	Level Accuracy:		
Conducted Emission	150kHz to 30MHz	±1.22 dB	±3.6 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±3.67 dB	±5.2 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.79 dB	N/A

4. List of Test and Measurement Instruments

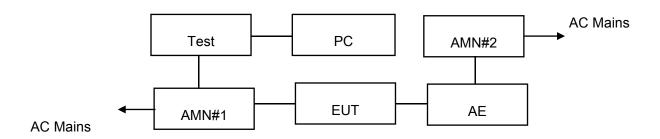
4.1. Radiated Emission Measurement

(Test software: EZ-EMC Ver. FA-03A2 RE)

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Double Ridged	Schwarzbeck	BBHA 9120D	1911	2019.11.02	
_ '	Broadband Horn Antenna	Scriwarzbeck	BBI IA 9 120D	1911	2019.11.02	
2	TRILOG Broadband	Schwarzbeck	VULB 9168	869	2019.11.02	
	Antenna	Scriwarzbeck	VOLD 9100	809	2019.11.02	
3	Amplifier	Agilent	8449B	3008A01838	2019.11.01	
4	Amplifier	HP	8447E	2945A02747	2019.11.01	
5	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESPI7	100362	2019.11.01	
6	Coaxial cable	ZDECL	ZT26	18091906	2019.11.01	
7	Coaxial cable	ZDECL	ZT26	18097604	2019.11.01	
8	Coaxial cable	ZDECL	ZT26	18091908	2019.11.01	
9	Coaxial cable	ZDECL	ZT26	18091907	2019.11.01	

4.2. Electrostatic Discharge Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	ESD Simulator	TESTQ	NSG437	329	2019.10.30


4.3. RF electromagnetic field Test

Item	Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Signal Generator	R&S	SMT 06	832080/007	2019.10.30
2	Log-Bicon Antenna	Schwarzbeck	VULB9161	4022	2019.10.30
3	Power Amplifier	AR	150W1000M1	320946	2019.10.30
4	Microwave Horn Antenna	AR	AT4002A	321467	2019.10.30
5	Power Amplifier	AR	25S1G4A	308598	2019.10.30

5. Mains terminal disturbance voltage

5.1. Block diagram of test setup

5.2. Limit

Requirements for conducted emissions from the AC mains power ports of Class B equipment

Frequency range	Detector type	Class B limits
MHz	/ bandwidth	dB(μV)
0,15 to 0,5		66 to 56
0,5 to 5	Quasi Peak / 9 kHz	56
5 to 30		60
0,15 to 0,5		56 to 46
0,5 to 5	Average / 9 kHz	46
5 to 30		50

5.3. EUT configuration on test

The following equipments are installed on conducted emission test to meet EN 55032 requirement and operating in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating condition of EUT

- 5.4.1. Setup the EUT and simulators as shown in Section 5.1.
- 5.4.2. Turn on the power of all equipments.
- 5.4.3. Let the EUT work in test modes and test it.

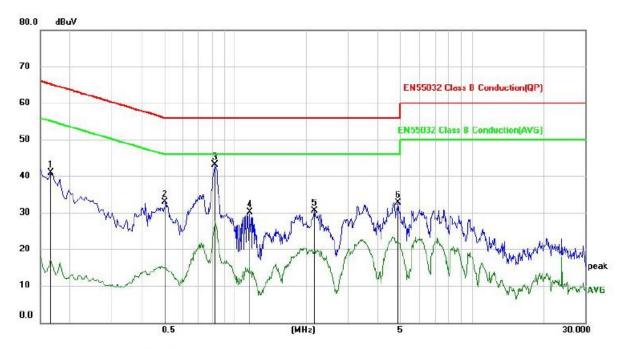
5.5. Test procedure

The AMN placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane. This distance was between the closest points of the AMN and the EUT. All other units of the EUT and associated equipment were at least 0,8 m from the AMN. All power was connected to the system through Artificial Mains Network (AMN). Conducted voltage measurements on mains lines were made at the output of the AMN. Both sides of AC line are checked to find out the maximum conducted emission according to the EN55032 regulations during conducted emission test. And the voltage probe had been used for the load terminals test according to the EN55032 standard.

The bandwidth of the test receiver (R&S ESCS30) is set at 9KHz in 150KHz~30MHz.

The frequency range from 150KHz to 30MHz is checked.

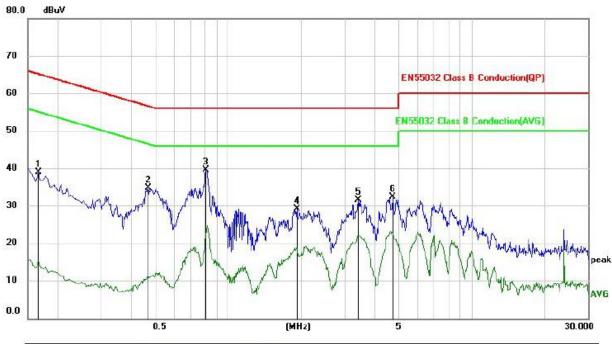
The Test results are listed in Section 5.6.


5.6. Test results

PASS

Please refer to the following page.

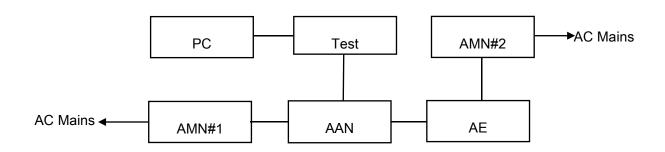
Phase: L



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1660	30.95	9.88	40.83	65.16	-24.33	peak	
2	0.5060	22.97	9.97	32.94	56.00	-23.06	peak	
3 *	0.8220	32.97	10.07	43.04	56.00	-12.96	peak	
4	1.1500	20.01	10.00	30.01	56.00	-25.99	peak	
5	2.1660	20.35	10.06	30.41	56.00	-25.59	peak	
6	4.8820	22.36	10.43	32.79	56.00	-23.21	peak	

Note: Result=Reading + Factor Over Limit=Result - Limit

Phase: N


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1660	28.78	10.05	38.83	65.16	-26.33	peak	
2	0.4700	24.96	9.80	34.76	56.51	-21.75	peak	
3 *	0.8100	29.63	9.94	39.57	56.00	-16.43	peak	
4	1.9180	19.08	10.12	29.20	56.00	-26.80	peak	
5	3.4260	21.23	10.25	31.48	56.00	-24.52	peak	
6	4.7300	21.92	10.32	32.24	56.00	-23.76	peak	

Note: Result=Reading + Factor Over Limit=Result - Limit

6. Conducted common mode (asymmetric mode) disturbance

6.1. Block diagram of test setup

6.2. Limit

Requirements for asymmetric mode conducted emissions from Class B equipment

Frequency range MHz	Detector type / bandwidth	Class B limits dB(µV)
0,15 to 0,5	Quasi Peak / 9 kHz	84 to 74
0,5 to 30	Quasi Feak / 9 kHz	74
0,15 to 0,5	Average / 9 kHz	74 to 64
0,5 to 30	Average / 9 Ki iz	64

6.3. EUT configuration on test

The following equipments are installed on conducted emission test to meet EN 55032 requirement and operating in a manner, which tends to maximize its emission characteristics in a normal application.

6.4. Operating condition of EUT

- 6.4.1. Setup the EUT and simulators as shown in Section 6.1.
- 6.4.2. Turn on the power of all equipments.
- 6.4.3. Let the EUT work in test modes and test it.

6.5. Test procedure

All power was connected to the system through Artificial Mains Network (AMN). All tested telecommunications lines were connected to an Asymmetric Artificial Network (AAN) and conducted voltage measurements on telecommunications lines were made at the output of the AAN. Where an AAN was not appropriate or available measurements were made using a Capacitive Voltage Probe and Current probe. Both sides of AC line are checked to find out the maximum conducted emission according to the EN55032 regulations during conducted emission test. And the voltage probe had been used for the load terminals test according to the EN55032 standard.

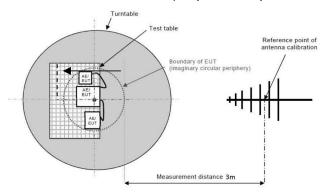
The bandwidth of the test receiver (R&S ESCS30) is set at 9KHz in 150KHz~30MHz.

The frequency range from 150KHz to 30MHz is checked.

The Test results are listed in Section 6.6.

6.6. Test results

N/A


EUT have no telecommunications port, no need to do this test.

7. Radiated emissions at frequencies up to 1 GHz

7.1. Block diagram of test setup

In semi-Anechoic Chamber (frequencies up to 1 GHz)

7.2.Limit

Requirements for radiated emissions at frequencies up to 1 GHz for class B equipment

Frequency		Class B limits			
range	Facility	Distance	Detector type /	dB(µV/m)	
MHz	Facility	m	bandwidth	αΒ(μν/ιιι)	
30 to 230	SAC	2	Quasi Peak /	40	
230 to 1 000	SAC	3	120 kHz	47	

7.3. EUT configuration on test

The EN 55032 regulations test method must be used to find the maximum emission during radiated emission test.

7.4. Operating condition of EUT

- 7.4.1. Setup the EUT as shown on Section 5.1.
- 7.4.2. Turn on the power of all equipments.
- 7.4.3. Let the EUT work in test mode and measure it.

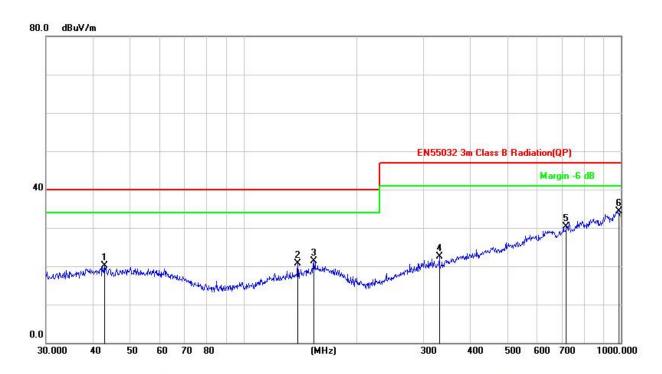
7.5. Test procedure

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The Boundary of EUT (imaginary circular periphery) is set 3 meters away from the receiving antenna (Reference point of antenna calibration) which is mounted on an antenna tower. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level. Broadband antennas (calibrated by dipole antenna) are used as a receiving antenna. Both horizontal and vertical polarizations of the antenna are set on test.

The bandwidth setting on the test receiver (R&S ESPI) reference 5.2.

The EUT is tested in Semi-Anechoic Chamber.

The Test results are listed in Section 5.6.


7.6. Test results

PASS.

Please refer to the following page.

Polarization: H

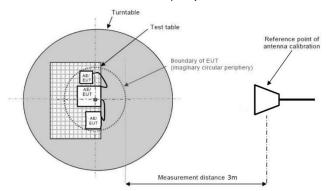
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		42.8998	26.66	-6.57	20.09	40.00	-19.91	peak			
2	- 0	139.3613	27.59	-6.98	20.61	40.00	-19.39	peak			
3	Ą	153.7385	27.31	-6.04	21.27	40.00	-18.73	peak			
4	9	330.1949	27.07	-4.55	22.52	47.00	-24.48	peak			
5	1	716.6820	25.57	4.79	30.36	47.00	-16.64	peak			
6	*	989.5355	26.20	8.18	34.38	47.00	-12.62	peak			

Note: Result=Reading + Factor Over Limit=Result - Limit

Polarization: V

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		31.2893	33.50	-7.59	25.91	40.00	-14.09	peak			
2		35.6240	32.22	-7.11	25.11	40.00	-14.89	peak			
3	*	43.6584	34.79	-6.61	28.18	40.00	-11.82	peak			
4		65.5727	30.04	-8.10	21.94	40.00	-18.06	peak			
5		155.9101	27.48	-6.02	21.46	40.00	-18.54	peak			
6		996.4996	26.01	8.18	34.19	47.00	-12.81	peak			

Note: Result=Reading + Factor Over Limit=Result - Limit



8. Radiated emissions at frequencies above 1 GHz

8.1. Block diagram of test setup

In semi-Anechoic Chamber (frequencies above 1 GHz)

8.2. Limit

Requirements for radiated emissions at frequencies above 1 GHz for class B equipment

Frequency		Measureme	ent	Class B limits
range	Equility.	Distance	Detector type /	dB(µV/m)
MHz	Facility	m	bandwidth	αΒ(μν/ιιι)
1000 to 3000			Average /	54
3000 to 6000	FSOATS	3	1 MHz	50
1000 to 3000	FSUATS	3	Peak /	70
3000 to 6000			1 MHz	74

8.3. EUT configuration on test

The EN 55032 regulations test method must be used to find the maximum emission during radiated emission test.

8.4. Operating condition of EUT

- 8.4.1. Setup the EUT as shown on Section 6.1.
- 8.4.2. Turn on the power of all equipments.
- 8.4.3. Let the EUT work in test mode and measure it.

8.5. Test procedure

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The Boundary of EUT (imaginary circular periphery) is set 3 meters away from the receiving antenna (Reference point of antenna calibration) which is mounted on an antenna tower. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarizations of the antenna are set on test.

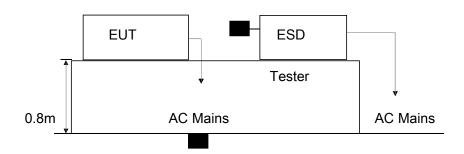
The bandwidth setting on the test receiver (R&S ESPI) reference 6.2.

The EUT is tested in Semi-Anechoic Chamber.

The Test results are listed in Section 6.6.

8.6. Test results

N/A


Fx < 108MHz, no need to do this test.

9. Electrostatic discharges (ESD)

9.1. Block diagram of ESD test setup

Remark: is Discharge Electrode

9.2. Test standard and Levels and Performance Criterion

EN 55035: 2017 (EN 61000-4-2:2009)

Characteristics	Test levels		
Air discharge	±8 kV		
Contact discharge	±4 kV		

Performance criterion: B

9.3. EUT configuration on test

The configuration of EUT are listed in Section 3.4.

9.4. Operating condition of EUT

- 9.5.1. Setup the EUT as shown in Section 7.1.
- 9.5.2. Turn on the power of all equipments.
- 9.5.3. Let the EUT work in test mode (full load) and test it.

9.5. Test procedure

9.5.1. Air discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

9.5.2. Contact discharge:

All the procedure shall be same as Section 9.6.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

9.5.3. Indirect discharge for horizontal coupling plane

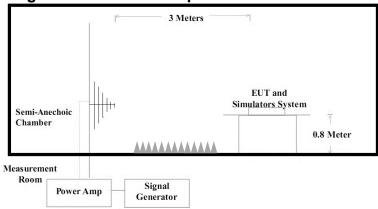
At least 20 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

9.5.4. Indirect discharge for vertical coupling plane

At least 20 single discharge shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

9.6. Test results PASS

Test results for electrostatic discharge (ESD)


Oper	ating mode:	Working				
No.	Location of discharge	Polarity	Discharge	Number of discharges	Test level kV	Observations
1	HCP top side	P&N	С	25	4	N/A
3	HCP bottom side	P&N	С	25	4	N/A
5	VCP right side	P&N	С	25	4	N/A
7	VCP left side	P&N	С	25	4	N/A
9	Points on conductive surface	P&N	С	25	4	N/A
10	Points on non-conductive surface	P&N	А	10	8	N/A

HCP = Horizontal coupling plate VCP = Vertical coupling plate N = Negative P = Positive A = Air discharge C = Contact discharge

10. Continuous RF electromagnetic field disturbances

10.1. Block diagram of R/S test setup

10.2. Test standard and Levels and Performance Criterion

EN 55035: 2017 (EN 61000-4-3:2006+A1:2008+A2:2010)

`	,
Characteristics	Test levels
Frequency range	80 MHz to 1 000 MHz
	180MHz, 2600MHz, 3500MHz,
	5000MHz
Test level	3 V/m (unmodulated)
Modulation	1 kHz, 80 % AM, sine wave

Performance criterion: A

10.3. Operating condition of EUT

Setup the EUT as shown in Section 10.1. The operating conditions of EUT are listed in section 3.4.

10.4. Test procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above the ground. The EUT is set 3 meters away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarizations of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.

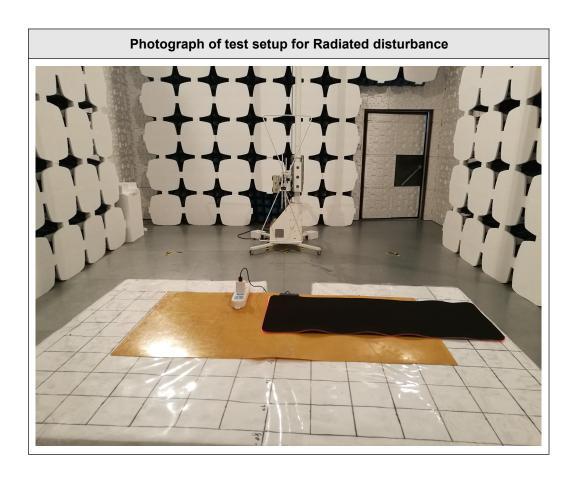
In order to determine the performance of EUT, a CCD camera is used to monitor the EUT. All the scanning conditions are follows:

	Condition of Test	Remarks
1.	Field Strength	3V/m (Test Level 2)
2.	Amplitude Modulated	1kHz, 80%AM, sine wave
3.	Scanning Frequency	80MHz-1000MHz,180MHz,
		2600MHz, 3500MHz, 5000MHz
4.	Step Size	1%increments
5.	The Rate of Sweep	0.0015 decade/s
6.	Dwell Time	3 Sec.

10.5. Test results

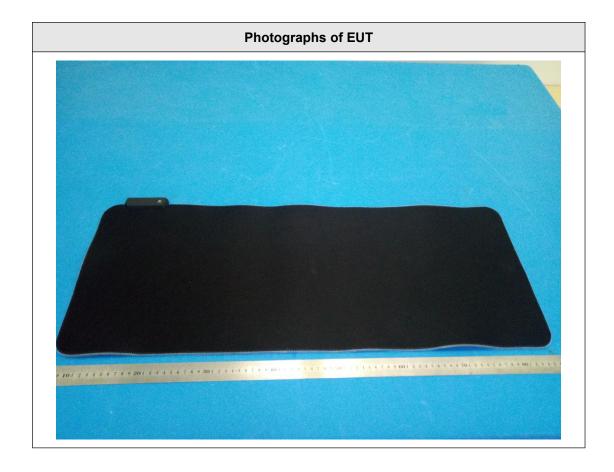
PASS.

Please refer to the following page.


Test results for Continuous RF electromagnetic field disturbances

Working					
3V/m					
80MHz to 1000MHz, 180MHz, 2600MHz, 3500MHz, 5000MHz					
⊠ 80 % AM with 1 kHz sine wave □ Pulse □ None					
1%					
3Sec					
A					
Horizontal	Vertical				
PASS	PASS				
PASS	PASS				
PASS	PASS				
PASS	PASS				
	3V/m 80MHz to 1000MHz, 180MHz, 26 ⊠ 80 % AM with 1 kHz sine wave 1% 3Sec A Horizontal PASS PASS PASS				

11. Photographs of test setup



12. Photographs of EUT

End of report