

G.SKILL International Enterprise

TEST REPORT

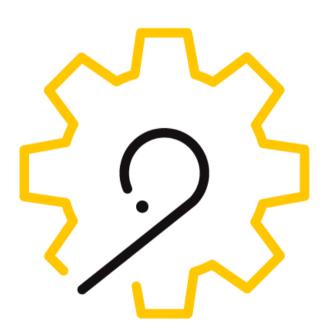
Model:

F5-7800J3848G16GX2-TZ5RK (Serial models please refer to section 1.2)

REPORT NUMBER

221000354THC-001

ISSUE DATE


Nov. 28, 2022

PAGES

41

GFT-OP-10h (28-Nov-2018) © 2020 Intertek

EMC TEST REPORT

Applicant:	G.SKILL International Enterprise			
	6F., No.69, Dongsing Rd., Sinyi Dist., Taipei City 11070, Taiwan			
Product:	Memory Module			
Model No.:	F5-7800J3848G16GX2-TZ5RK			
iviodei No.:	(Serial models please refer to section 1.2)			
Brand Name:	NIL			
Test Method/ Standard:	EN 55032: 2015+A1: 2020			
	EN IEC 61000-3-2: 2019+A1: 2021			
	EN 61000-3-3: 2013+A1: 2019			
	EN 55035: 2017+A11: 2020			
	BS EN 55032: 2015+A1: 2020			
	BS EN IEC 61000-3-2: 2019+A1: 2021			
	BS EN 61000-3-3: 2013+A1: 2019			
	BS EN 55035: 2017+A11: 2020			
Test By:	Intertek Testing Services Taiwan Ltd.			
	Hsinchu Laboratory			
	No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li			
	Shiang-Shan District, Hsinchu City, Taiwan			

Mandy Su

and

Reviewer

Lion Chiu Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Revision History

Report No.	Issue Date	Revision Summary
221000354THC-001	Nov. 28, 2022	Original report

Table of Contents

1.	General Information	5
	1.1 Identification of the EUT	5
	1.2 Additional information about the EUT	5
2.	Test Summary	8
3.	Test Specifications	9
	3.1 Standards	9
	3.2 Classification of MME	9
	3.3 Performance criteria	10
	3.4 Mode of operation during the test	11
	3.5 Peripherals equipment	11
4.	Conducted Emission Test	. 12
	4.1 Test Procedure	
	4.2 Test Equipment	
	4.3 Conducted Emission Limit	
	4.4 Conducted Emission Data	
_	Radiated Emission Test	16
Э.	5.1.1 Test Procedure from 30 MHz to 1000 MHz	
	5.1.2 Test Equipment	
	5.1.3 Radiated Emission Limit	
	5.1.4 Radiated Emission Test Data from 30 MHz to 1000 MHz	
	5.2.1 Test Procedure above 1 GHz	
	5.2.2 Test Equipment	
	5.2.3 Radiated Emission Limit	
	5.2.4 Radiated Emission Test Data above 1 GHz	22
6.	Harmonics Test	24
7.	Voltage Fluctuations-Flicker Test	25
8.	Electrostatic Discharge Immunity Test	26
	8.1 Purpose	26
	8.2 Test Set-Up	26
	8.3 Test Specification	26
	8.4 Test Equipment	26
	8.5 Test Result	
9.	Radiated, Radio-Frequency, Electromagnetic Field Immunity Test	28
٠.	9.1 Purpose	
	9.2 Test Set-Up	
	9.3 Test Specification	
	9.4 Test Equipment	
	9.5 Generation of the Electromagnetic Field	

TEST REPORT

9.6 Test Results	30
10. Electrical Fast Transient/Burst Immunity Test	31
11. Surge Immunity Test	32
12. Immunity to Conducted Disturbances, Inducted by Radio-Frequency Fields	33
13. Power Frequency Magnetic Field Immunity Test	34
13.1 Purpose	
13.2 Test Set-Up	
13.3 Test Condition	
13.4 Test Equipment	35
13.5 Test Result	35
14. Voltage Dips, Short Interruptions and Voltage Variations Immunity Test	36
Appendix A: Uncertainty	37
Appendix B: Photo of EUT	38
Appendix C1: Conducted Emission Test Set-up	39
Appendix C2: Radiated Emission Test Set-up (Below 1GHz)	40
Annendix C3: Radiated Emission Test Set-un (Ahove 1GHz)	41

1. General Information

1.1 Identification of the EUT

Product:	Memory Module
Model No.:	F5-7800J3848G16GX2-TZ5RK
Rated Power:	1.2Vdc
Power Cord:	N/A
Sample receiving date:	2022/10/28
Sample condition:	Workable
Testing date:	2022/11/08 ~ 2022/11/15

1.2 Additional information about the EUT

The customer confirmed the series models are identical in IC and different in appearance, color, capacity and speed.

Trident Z5 RGB / Z5 Neo RGB				
F5-5200J2834F16GX2-TZ5RS	F5-5200J2834F16GX2-TZ5RK			
F5-5200J3636C16GA2-TZ5RS	F5-5200J3636C16GA2-TZ5RK			
F5-5200J3636C16GX2-TZ5RS	F5-5200J3636C16GX2-TZ5RK			
F5-5200J4040A16GA2-TZ5RS	F5-5200J4040A16GA2-TZ5RK			
F5-5200J4040A16GX2-TZ5RS	F5-5200J4040A16GX2-TZ5RK			
F5-5200U3636C16GA2-TZ5RS	F5-5200U3636C16GA2-TZ5RK			
F5-5200U3636C16GX2-TZ5RS	F5-5200U3636C16GX2-TZ5RK			
F5-5200U4040D16GX4-TZ5RS	F5-5200U4040D16GX4-TZ5RK			
F5-5600J2834F16GA2-TZ5RS	F5-5600J2834F16GA2-TZ5RK			
F5-5600J2834F16GX2-TZ5RS	F5-5600J2834F16GX2-TZ5RK			
F5-5600J2834F32GA2-TZ5RS	F5-5600J2834F32GA2-TZ5RK			
F5-5600J2834F32GX2-TZ5RS	F5-5600J2834F32GX2-TZ5RK			
F5-5600J3036D16GA2-TZ5RS	F5-5600J3036D16GA2-TZ5RK			
F5-5600J3036D16GX2-TZ5RS	F5-5600J3036D16GX2-TZ5RK			
F5-5600J3036D32GA2-TZ5RS	F5-5600J3036D32GA2-TZ5RK			
F5-5600J3036D32GX2-TZ5RS	F5-5600J3036D32GX2-TZ5RK			
F5-5600J3636C16GA2-TZ5RS	F5-5600J3636C16GA2-TZ5RK			
F5-5600J3636C16GX2-TZ5RS	F5-5600J3636C16GX2-TZ5RK			
F5-5600J3636D32GA2-TZ5RS	F5-5600J3636D32GA2-TZ5RK			
F5-5600J3636D32GX2-TZ5RS	F5-5600J3636D32GX2-TZ5RK			

TEST REPORT

Trident Z5 RGB / Z5 Neo RGB F5-5600J4040C16GA2-TZ5RS F5-5600J4040C16GA2-TZ5RK F5-5600J4040C16GX2-TZ5RS F5-5600J4040C16GX2-TZ5RK F5-5600U3636C16GA2-TZ5RS F5-5600U3636C16GA2-TZ5RK F5-5600U3636C16GX2-TZ5RS F5-5600U3636C16GX2-TZ5RK F5-5600U4040C16GA2-TZ5RK F5-5600U4040C16GA2-TZ5RS F5-5600U4040C16GX2-TZ5RS F5-5600U4040C16GX2-TZ5RK F5-6000U4040E16GX2-TZ5RS F5-6000U4040E16GX2-TZ5RK F5-6000J3040F16GA2-TZ5RS F5-6000J3040F16GA2-TZ5RK F5-6000J3040F16GX2-TZ5RS F5-6000J3040F16GX2-TZ5RK F5-6000J3040G32GA2-TZ5RS F5-6000J3040G32GA2-TZ5RK F5-6000J3040G32GX2-TZ5RS F5-6000J3040G32GX2-TZ5RK F5-6000J3238F16GA2-TZ5RS F5-6000J3238F16GA2-TZ5RK F5-6000J3238F16GX2-TZ5RS F5-6000J3238F16GX2-TZ5RK F5-6000J3238G32GA2-TZ5RS F5-6000J3238G32GA2-TZ5RK F5-6000J3238G32GX2-TZ5RS F5-6000J3238G32GX2-TZ5RK F5-6000J3636F16GA2-TZ5RS F5-6000J3636F16GA2-TZ5RK F5-6000J3636F16GX2-TZ5RS F5-6000J3636F16GX2-TZ5RK F5-6000J4040F16GA2-TZ5RS F5-6000J4040F16GA2-TZ5RK F5-6000J4040F16GX2-TZ5RS F5-6000J4040F16GX2-TZ5RK F5-6000U3636E16GX2-TZ5RS F5-6000U3636E16GX2-TZ5RK F5-6000U4040E16GA2-TZ5RS F5-6000U4040E16GA2-TZ5RK F5-6400J3238G16GA2-TZ5RS F5-6400J3238G16GA2-TZ5RK F5-6400J3238G16GX2-TZ5RS F5-6400J3238G16GX2-TZ5RK F5-6400J3238G32GX2-TZ5RK F5-6400J3239G16GA2-TZ5RS F5-6400J3239G16GX2-TZ5RS F5-6400J3239G16GA2-TZ5RK F5-6400J3239G32GX2-TZ5RS F5-6400J3239G16GX2-TZ5RK F5-6400J3636G16GA2-TZ5RS F5-6400J3239G16GX2-TZ5RKSPL F5-6400J3636G16GX2-TZ5RS F5-6400J3239G32GX2-TZ5RK F5-6400J4040G16GA2-TZ5RS F5-6400J3636G16GA2-TZ5RK F5-6400J4040G16GX2-TZ5RS F5-6400J3636G16GX2-TZ5RK F5-6400U3636F16GX2-TZ5RS F5-6400J4040G16GA2-TZ5RK F5-6400U4040F16GA2-TZ5RS F5-6400J4040G16GX2-TZ5RK F5-6400U4040F16GX2-TZ5RS F5-6400U3636F16GX2-TZ5RK F5-6600J3440G16GA2-TZ5RS F5-6400U4040F16GA2-TZ5RK F5-6600J3440G16GX2-TZ5RS F5-6400U4040F16GX2-TZ5RK

TEST REPORT

Trident Z5 RGB / Z5 Neo RGB F5-6600J4040G16GA2-TZ5RS F5-6600J3440G16GA2-TZ5RK F5-6600J4040G16GX2-TZ5RS F5-6600J3440G16GX2-TZ5RK F5-6600U4040F16GX2-TZ5RS F5-6600J4040G16GA2-TZ5RK F5-6666U4040P16GX2-TZ5RS F5-6600J4040G16GX2-TZ5RK F5-6800J3245G16GX2-TZ5RS F5-6600U4040F16GX2-TZ5RK F5-6800J3445G16GX2-TZ5RS F5-6666U4040P16GX2-TZ5RK F5-6800J3445G32GX2-TZ5RS F5-6800J3245G16GX2-TZ5RK F5-7200J3445G16GX2-TZ5RS F5-6800J3442G16GX2-TZ5RK F5-7600J3646G16GX2-TZ5RS F5-6800J3444G32GX2-TZ5RK F5-7800J3848G16GX2-TZ5RS F5-6800J3445G16GX2-TZ5RK F5-7200J3445G32GX2-TZ5RS F5-6800J3445G32GX2-TZ5RK F5-7600J3645G16GX2-TZ5RS F5-7200J3444G16GX2-TZ5RK F5-7800J3845H16GX2-TZ5RS F5-7200J3445G16GX2-TZ5RK F5-8000J4045H16GX2-TZ5RS F5-7200J3646G32GX2-TZ5RK F5-7800J3646H16GX2-TZ5RS F5-7466J3648G16GX2-TZ5RK F5-8000J4050H16GX2-TZ5RS F5-7600J3646G16GX2-TZ5RK F5-8000J3848H16GX2-TZ5RS F5-7600J3648G16GX2-TZ5RK F5-8000J3646I16GX2-TZ5RS F5-6000J3038F16GX2-TZ5NR F5-7600J3545G32GX2-TZ5RS F5-5600J2834F16GX2-TZ5NR F5-8000J4049H16GX2-TZ5RS F5-5600J2834F32GX2-TZ5NR F5-7800J3847H16GX2-TZ5RS F5-5600J3036D16GX2-TZ5NR F5-7800J3848H16GX2-TZ5RS F5-6000J3040G32GX2-TZ5NR F5-6000J3238F16GX2-TZ5NR F5-8000J4050H16GX2-TZ5RK F5-8000J4049H16GX2-TZ5RK F5-7800J3845H16GX2-TZ5RK F5-8000J4045H16GX2-TZ5RK F5-7800J3848H16GX2-TZ5RK F5-8000J3848H16GX2-TZ5RK F5-7200J3445G32GX2-TZ5RK F5-7600J3645G16GX2-TZ5RK F5-8000J3646I16GX2-TZ5RK F5-7600J3545G32GX2-TZ5RK F5-7800J3847H16GX2-TZ5RK

2. Test Summary

Emission				
Standard	Test Type	Result	Remarks	
	Conducted Emission	PASS	Meet Class B Limit	
EN 55032: 2015+A1: 2020 BS EN 55032: 2015+A1: 2020	Asymmetric mode Conducted emissions	N/A	N/A	
	Conducted differential voltage emissions	N/A	N/A	
	Radiated Emission	PASS	Meet Class B Limit	
EN IEC 61000-3-2: 2019+A1: 2021 BS EN IEC 61000-3-2: 2019+A1: 2021	Harmonic current Emissions	N/A	N/A	
EN 61000-3-3: 2013+A1: 2019 BS EN 61000-3-3: 2013+A1: 2019	Voltage fluctuation & Flicker	N/A	N/A	

Immunity (EN 55035: 2017+A11: 2020)					
Standard	Test Type	Minimum Performance Criteria	Result		
IEC 61000-4-2: 2008	ESD	Criterion B	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-3: 2020	RS	Criterion A	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-4: 2012	EFT	Criterion B	N/A	N/A	
IEC 61000-4-5: 2014/ AMD1: 2017	Surge	Criterion B	N/A	N/A	
IEC 61000-4-6: 2013	CS	Criterion A	N/A	N/A	
IEC 61000-4-8: 2009	Magnetic Field	Criterion A	PASS	Meets the requirements of Performance Criterion A	
JEC (4000 4 44, 2020	Dip	Criterion B / Criterion C note1	N/A	N/A	
IEC 61000-4-11: 2020	Interruption	Criterion C	N/A	N/A	
Note: 1. Voltage dips residual voltage <5 %, Performance criteria: Criterion B; Voltage dips residual voltage 70%, Performance criteria: Criterion C;					

Remark: Please note that the test results with statement of conformity, the decision rules which are based on: Safety Testing: the specification, standard or IEC Guide 115.

Other Testing: the specification, standard and not taking into account the measurement uncertainty.

3. Test Specifications

3.1 Standards

EN 55032: 2015+A1: 2020 / BS EN 55032: 2015+A1: 2020 Electromagnetic compatibility of multimedia equipment - Emission requirements

EN IEC 61000-3-2: 2019+A1: 2021 / BS EN IEC 61000-3-2: 2019+A1: 2021 Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤16 A per phase)

EN 61000-3-3: 2013+A1: 2019 / BS EN 61000-3-3: 2013+A1: 2019 Electromagnetic compatibility (EMC) - Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection

EN 55035: 2017+A11: 2020 / BS EN 55035: 2017+A11: 2020 Electromagnetic compatibility of multimedia equipment. Immunity requirements

3.2 Classification of MME

The MME equipment defines Class A equipment and Class B equipment associated with two types of end-use environment.

The Class B requirements for equipment are intended to offer adequate protection to broadcast services within the residential environment.

Equipment intended primarily for use in a residential environment shall meet the Class B limits. All other equipment shall comply with the Class A limits.

Broadcast receiver equipment is class B equipment.

3.3 Performance criteria

The performance criteria listed below are based on those regulated in the standard.

Criteria A:

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Criteria B:

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

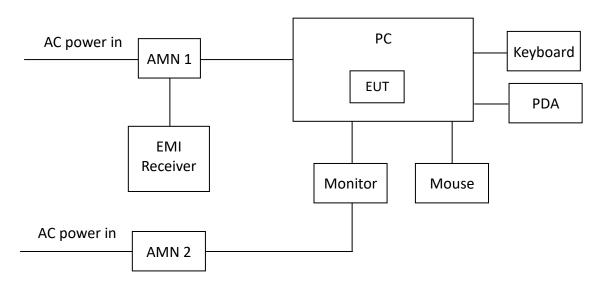
Criteria C:

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

3.4 Mode of operation during the test

- 1. Install the EUT to the PC.
- 2. Tester executed test program "RunMemtest pro".


3.5 Peripherals equipment

Peripherals	Brand	Model No.	Serial No.	Description of Data Cable
PC	ASUSTEK	ROG MAXIMUS Z690 HERO	N/A	N/A
Keyboard	Microsoft	1366	N/A	N/A
PDA	НР	IPAQ112	N/A	N/A
Mouse	НР	MOHQUO	N/A	N/A
Monitor	DELL	P2415qb	N/A	N/A

4. Conducted Emission Test

4.1 Test Procedure

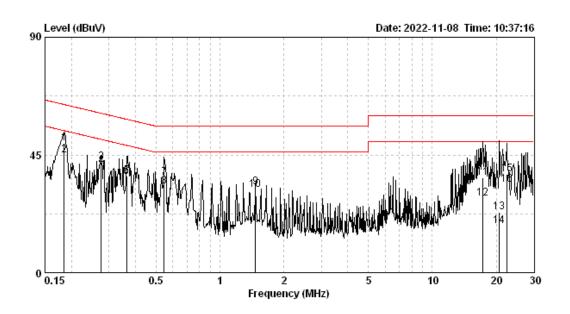
The EUT along with its peripherals were placed on a 1.0 meter(W)×1.5meter(L) and 0.8 meter in height wooden table and the EUT was adjusted to maintain a 0.4meter space from a vertical reference plane. The EUT was connected to power mains through a Artificial Mains Network (AMN), which provided 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.

The excess power cable between the EUT and the AMN was bundled. All connecting cables of EUT and peripherals were moved to find the maximum emission

4.2 Test Equipment

Test Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
EMI Test Receiver	R&S	ESCS30	825788/014	2022/04/08	2023/04/07
AMN	R&S	ESH3-Z5	835239/023	2022/07/26	2023/07/25
AMN	R&S	ENV216	101160	2022/07/13	2023/07/12
CON-2 Cable	SUHNER	EMCCFD300-BM-NM-6000	170502	2022/04/29	2023/04/28
Test software	Audix	e3	V4.20040112L	NCR	NCR

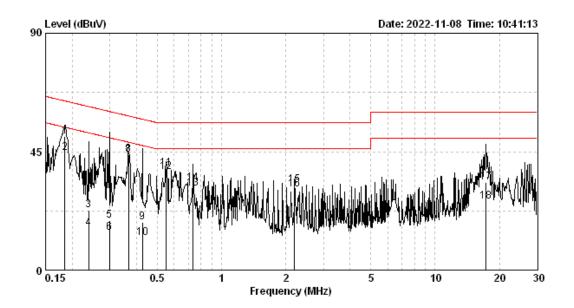
Note: No Calibration Required (NCR).


4.3 Conducted Emission Limit

Frequency (MHz)	Maximum RF Line Voltage Class B Equipment (dBμV)		
	Q.P.	Avg.	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5.00	56	46	
5.00 to 30.0	60	50	

4.4 Conducted Emission Data

Model No.:	F5-7800J3848G16GX2-TZ5RK
Remark:	N/A



Phase	Frequency	Corr. Factor	Reading QP	Level QP	Limit QP	Reading AV	Level AV	Limit AV	(d	gin B)
	(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBu∜)	(dBu∜)	(dBu∀)	QP	ΑV
LINE	0.184	9.65	39.69	49.34	64.28	35.31	44.96	54.28	-14.94	-9.32
LINE	0.276	9.65	32.42	42.07	60.94	30.85	40.50	50.94	-18.87	-10.44
LINE	0.363	9.66	27.39	37.05	58.65	27.09	36.75	48.65	-21.60	-11.90
LINE	0.546	9.66	26.44	36.10	56.00	23.20	32.86	46.00	-19.90	-13.14
LINE	1.472	9.70	22.88	32.58	56.00	21.82	31.52	46.00	-23.42	-14.48
LINE	17.291	9.83	26.59	36.42	60.00	18.67	28.50	50.00	-23.58	-21.50
LINE	20.704	9.86	13.23	23.09	60.00	7.98	17.84	50.00	-36.91	-32.16
LINE	22.416	9.90	27.76	37.66	60.00	23.59	33.49	50.00	-22.34	-16.51

Remark:

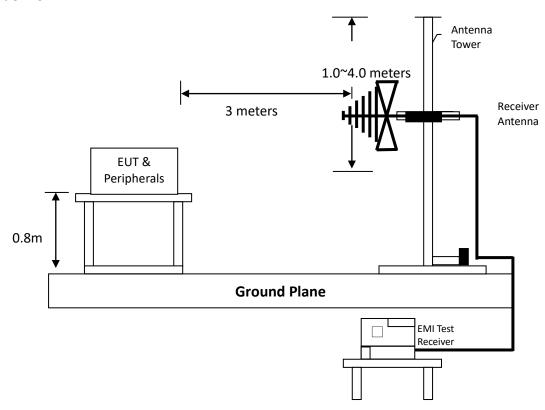
- 1. Corr. Factor (dB) = AMN Factor (dB) + Cable Loss (dB)
- 2. Level (dBuV) = Corr. Factor (dB) + Reading (dBuV)
- 3. Margin (dB) = Level (dBuV) Limit (dBuV)

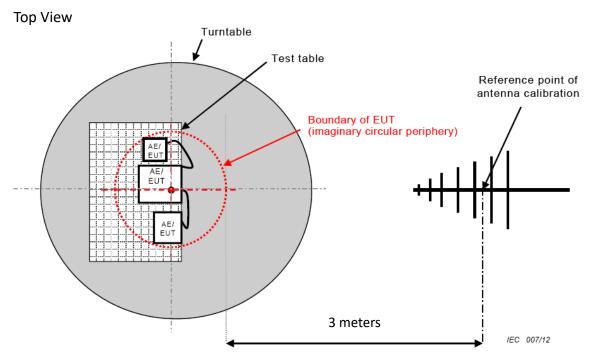
Test voltage :AC 230V/50M: Temp. / R.M. :22°C / 52%RU Atmospheric pressure :1002hPa

Phase	Frequency	Corr. Factor	Reading QP	Level QP	Limit QP	Reading AV	Level AV	Limit AV	(d	gin B)
	(MHz)	(dB)	(dBuV)	(dBu∀)	(dBuV)	(dBu∜)	(dBuV)	(dBuV)	QP	ΑV
NEUTRAL	0.184	9.66	41.09	50.75	64.28	35.00	44.66	54.28	-13.53	-9.62
NEUTRAL	0.239	9.66	13.00	22.66	62.13	6.05	15.71	52.13	-39.47	-36.42
NEUTRAL	0.299	9.66	9.11	18.77	60.28	4.37	14.03	50.28	-41.50	-36.24
NEUTRAL	0.367	9.67	34.27	43.94	58.56	33.86	43.53	48.56	-14.63	-5.04
NEUTRAL	0.426	9.67	8.55	18.22	57.33	2.63	12.30	47.33	-39.11	-35.03
NEUTRAL	0.552	9.68	28.98	38.66	56.00	27.54	37.22	46.00	-17.34	-8.78
NEUTRAL	0.735	9.69	23.35	33.04	56.00	21.42	31.11	46.00	-22.96	-14.89
NEUTRAL	2.201	9.71	22.68	32.39	56.00	20.79	30.50	46.00	-23.61	-15.50
NEUTRAL	17.291	9.89	23.31	33.20	60.00	16.03	25.92	50.00	-26.80	-24.08

Remark

- 1. Corr. Factor (dB) = AMN Factor (dB) + Cable Loss (dB)
- 2. Level (dBuV) = Corr. Factor (dB) + Reading (dBuV)
- 3. Margin (dB) = Level (dBuV) Limit (dBuV)


TEST REPORT


Report No.: 221000354THC-001

5. Radiated Emission Test

5.1.1 Test Procedure from 30 MHz to 1000 MHz

The figure below shows the test setup, which is utilized to make these measurements. Side View

TEST REPORT

Report No.: 221000354THC-001

Radiated testing was performed at a 3 meters semi-anechoic chamber. The equipment under test were placed on a turntable top 0.8 meter above ground. The table was 360 degrees to determine the position of the highest radiation. EUT is set 3 meters from the EMI receiving antenna, which is mounted on a variable height mast. The antenna height is varied between one meter and four meters above ground to find the maximum value of the field strength. Both horizontal polarization and vertical polarization of the antenna was set to conduct the measurement.

The bandwidth was set on the EMI meter 120 kHz.

The levels are quasi peak value readings. The frequency spectrum from 30 MHz to 1000 MHz was investigated.

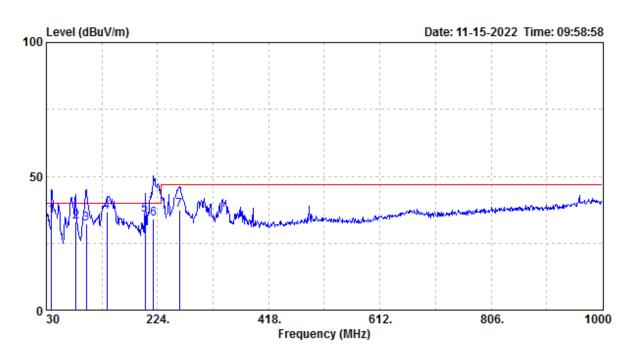
5.1.2 Test Equipment

Test Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
EMI Test Receiver	R&S	ESU40	100381	2022/05/16	2023/05/15
Bi-log Hybrid Antenna	ETC	MCTD2786	BL13S03017	2022/05/19	2023/05/18
966-1(A) Cable	SUHNER	SMA / SUCOFLEX 104	29510614	2022/04/08	2023/04/07
966-1(B) Cable	JUNFLON	SMA / J12J100880-00	AUG-26-08-001	2022/04/08	2023/04/07
966-1_3m Semi-Anechoic Chamber	966_1	CEM-966_1	N/A	2022/01/07	2023/01/06
Test software	Audix	e3	V4.20040112L	NCR	NCR

Note: No Calibration Required (NCR).

5.1.3 Radiated Emission Limit

Frequency (MHz)	Distance(m)	Class B Equipment (dBμV/m)
30 to 230	3	40
230 to 1000	3	47

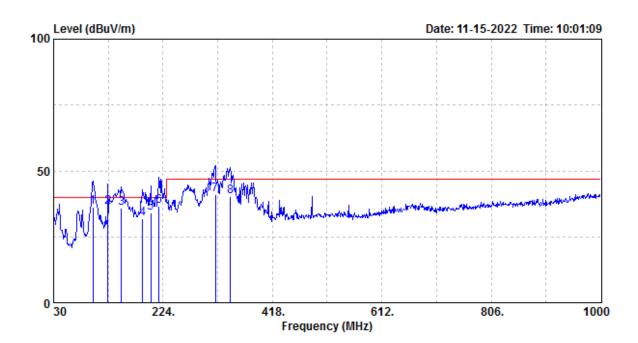

Note:

- 1. The tighter limit shall apply at the edge between two frequency bands.
- 2. Distance refers to the distance in meters between the EUT to antenna.

5.1.4 Radiated Emission Test Data from 30 MHz to 1000 MHz

Model No.:	F5-7800J3848G16GX2-TZ5RK
Remark:	N/A

Testing Voltage :AC 230V / 50Hz


Temp. :32 °C Relative Humidity :55 %RH Atmospheric pressure:1003 hPa

Freq	Pol/Phase	Factor			Limit Line		Remark
MHz		$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	−dBuV	$\overline{\mathtt{d}}\overline{\mathtt{B}}\overline{\mathtt{u}}\overline{\mathtt{V}}/\overline{\mathtt{m}}$	$\overline{\mathtt{d}\mathtt{B}\mathtt{u}\mathtt{V}/\mathtt{m}}$	<u>dB</u>	
81.410 99.840 135.730 202.660 217.210	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL	16.83 20.00 21.19 19.51 20.67	16.26 12.13 15.26 15.96 13.55	32.13 36.45 35.47 34.22	40.00 40.00 40.00 40.00 40.00 40.00 47.00	-7.87 -3.55 -4.53 -5.78	ÕP ÕP ÕP ÕP ÕP

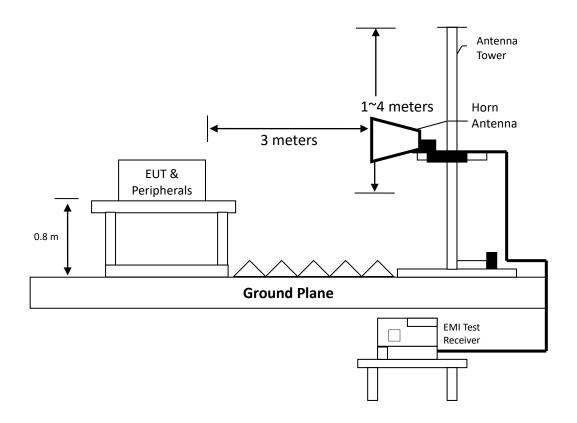
Remark:

- 1. Factor = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Level (dB μ V/m) = Factor (dB) + Read Level (dB μ V)
- 3. Over Limit (dB) = Level (dB μ V/m) Limit Line (dB μ V/m)

Testing Voltage :AC 230V / 50Hz

Temp. :32 °C
Relative Humidity :55 %RH
Atmospheric pressure:1003 hPa

Freq	Pol/Phase	Factor	Read Level		Limit Line	Over Limit	Remark
MHz		dB	₫BuŸ	$\overline{\mathtt{d}\mathtt{B}\mathtt{u}\mathtt{V}/\mathtt{m}}$	$\overline{\mathtt{d}\mathtt{B}\mathtt{u}\mathtt{V}/\mathtt{m}}$	āB	
126.030 150.280 188.110 202.660 217.210	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL	21.37 18.76 19.51 20.67	14.63 13.20 14.66 16.07	36.11 36.00 31.96 34.17 36.74	40.00 40.00 40.00 40.00 40.00	-3.89 -4.00 -8.04 -5.83 -3.26	ÕP ÕP ÕP ÕP ÕP
	HORIZONTAL						


Remark:

- 1. Factor = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Level (dB μ V/m) = Factor (dB) + Read Level (dB μ V)
- 3. Over Limit (dB) = Level (dB μ V/m) Limit Line (dB μ V/m)

5.2.1 Test Procedure above 1 GHz

The figure below shows the test setup, which is utilized to make these measurements.

Radiated testing was performed at a 3 meters semi-anechoic chamber. The equipment under test were placed on a turntable top 0.8 meter above ground. The table was 360 degrees to determine the position of the highest radiation. EUT is set 3 meters from the EMI receiving antenna, which is mounted on a variable height mast. The antenna height is varied between one meter and four meters above ground to find the maximum value of the field strength. Both horizontal polarization and vertical polarization of the antenna was set to conduct the measurement.

The bandwidth was set on the EMI meter 1 MHz.

The levels are peak and average value readings. The frequency spectrum above 1 GHz was investigated.

5.2.2 Test Equipment

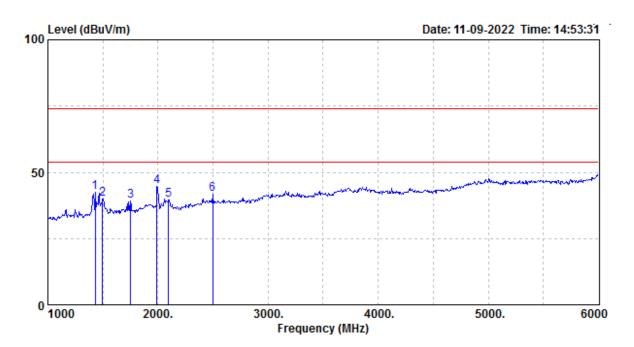
Test Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
EMI Test Receiver	R&S	ESU40	100381	2022/05/16	2023/05/15
Horn Antenna	EMCO	3115	9906-5822	2022/05/11	2023/05/10
Pre-Amplifier	AML	AML0120L3401	0419-114	2022/01/17	2023/01/16
966-1(A) Cable	SUHNER	SMA / SUCOFLEX 104	29510614	2022/04/08	2023/04/07
966-1(B) Cable	JUNFLON	SMA / J12J100880-00	AUG-26-08-001	2022/04/08	2023/04/07
966-1_3m Semi-Anechoic Chamber	966_1	CEM-966_1	N/A	2022/01/07	2023/01/06
Test software	Audix	e3	V4.20040112L	NCR	NCR

Note: No Calibration Required (NCR).

5.2.3 Radiated Emission Limit

Frequency	Distance	Class B E	quipment
(GHz)	(meter)	Average limit (dBμV/m)	Peak limit (dBμV/m)
1 to 6	3	54	74

Note: The lower limit applies at the transition frequency.



TEST REPORT

Report No.: 221000354THC-001

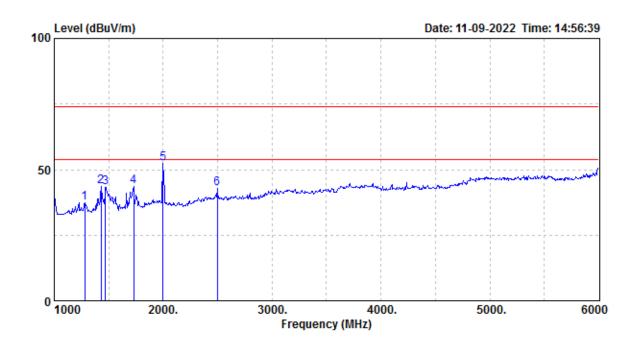
5.2.4 Radiated Emission Test Data above 1 GHz

Model No.:	F5-7800J3848G16GX2-TZ5RK
Remark:	N/A

Testing Voltage :AC 230V / 50Hz

Temp. :26 °C Relative Humidity :55 %RH Atmospheric pressure:1003 hPa

Freq Pol/Pha	se Factor		Level		Over Limit	Remark
MHz	<u>d</u> B	—dBu∜	$\overline{\mathtt{d}}\overline{\mathtt{B}}\overline{\mathtt{u}}\overline{\mathtt{V}}/m$	$\overline{\mathtt{d}}\overline{\mathtt{B}}\overline{\mathtt{u}}\overline{\mathtt{V}}7\overline{\mathtt{m}}$	<u>dB</u>	
1430.000 VERTICA 1495.000 VERTICA 1750.000 VERTICA 1990.000 VERTICA 2095.000 VERTICA 2495.000 VERTICA	L 5.24 L 6.95 L 7.98 L 7.97	34.71 32.24 36.59 31.67	39.95 39.19 44.57 39.64	74.00 74.00 74.00 74.00 74.00 74.00	-34.05 -34.81 -29.43 -34.36	Peak Peak Peak Peak


Remark:

- 1. Level $(dB\mu V/m) = Factor (dB) + Read Level (dB\mu V)$
- 2. Factor = Antenna Factor (dB/m) + Cable Loss (dB) Amplifier Gain (dB)

(*The Amplifier Gain depended on measure equipment, see test equipment list.)

3. Over Limit (dB) = Level (dB μ V/m) – Limit Line (dB μ V/m)

Testing Voltage :AC 230V / 50Hz

Temp. :26 °C Relative Humidity :55 %RH Atmospheric pressure:1003 hPa

Freq	Pol/Phase	Factor	Read Level		Limit Line	Over Limit	Remark
MXz		āB	₫BuŸ	$\overline{dBuV/m}$	$\overline{\mathtt{d}\mathtt{BuV/m}}$	dB	
1430.000 1470.000 1730.000 2000.000	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL	4.91 5.20 6.57 8.00	38.67 38.05 36.84 44.42	43.57 43.24 43.41 52.42	74.00 74.00 74.00 74.00 74.00 74.00	-30.43 -30.76 -30.59 -21.58	Peak Peak Peak Peak

Remark:

- 1. Level $(dB\mu V/m) = Factor (dB) + Read Level (dB\mu V)$
- 2. Factor = Antenna Factor (dB/m) + Cable Loss (dB) Amplifier Gain (dB)

(*The Amplifier Gain depended on measure equipment, see test equipment list.)

3. Over Limit (dB) = Level (dB μ V/m) – Limit Line (dB μ V/m)

6. Harmonics Test

7. Voltage Fluctuations-Flicker Test

8. Electrostatic Discharge Immunity Test

8.1 Purpose

The object of the test is to evaluate the ESD immunity performance of EUT.

8.2 Test Set-Up

A horizontal coupling plane (HCP) was placed on a non-metallic table 0.8 meter above a reference ground plane (RGP) and connected to it with a cable with two 470 k Ω resistors. The EUT was placed on an insulation sheet on the HCP and was operated according to the specified operating mode.

A vertical coupling plane (VCP) was connected to the RGP with a cable with two 470 k Ω resistors.

8.3 Test Specification

Test level: Contact discharge +/- 4 kV

Single discharge at 1 second interval positive discharge and negative discharge The selected test points are listed in this table, the numbers refer to the figures attached.

8.4 Test Equipment

Test Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
Electrostatic Discharge System	NoiseKen	ESS-2002	ESS0291088	2022/07/20	2023/07/19

8.5 Test Result

Temperature:	22	°C	Model No.:	F5-7800J3848G16GX2-TZ5RK
Relative Humidity:	55	%RH	Test Date :	2022/11/15
Atmospheric Pressure:	1006	hPa	Test Voltage:	230Vac, 50Hz
Remark:	N/A			

Point of Discharge	Applied Voltage (kV)	Number of Discharge	Test Result	Performance Criterion
VCP (4 sides)	±4	20	PASS	А
HCP (4 sides)	±4	20	PASS	А

Description of Discharge Point

Contact Discharge <u>0</u> Test points		Αi	ir Di	scharge
	Metallic Screws			Plastic Screws
	Metallic Case			Plastic Case (gap)
	Metallic Connect ports			Plastic Connect ports
	Metallic Junctions			Plastic Junctions
	Others:			LED indicator
				Panel Board
				Others:

TEST REPORT

Report No.: 221000354THC-001

9. Radiated, Radio-Frequency, Electromagnetic Field Immunity Test

9.1 Purpose

This test method subjects the EUT to a power source of disturbance comprising electric and magnetic field, simulating those coming from intentional RF transmitters.

9.2 Test Set-Up

The EUT was placed on a non-metallic table 0.8 meter above the reference ground plane (RGP) and was operated according to its specified operating mode.

Ferrite tiles/absorbers were placed on the RGP between the EUT and the antenna to reduce the reflections from the RGP. The EUT and its cables were exposed for the electromagnetic field for 1.5meter vertically and 1.5m horizontally.

The distance between antenna and EUT is 3 meter.

9.3 Test Specification

Frequency range	Test field strength V/m	Modulation
80MHz ~ 1GHz		
1800MHz ±1 %		
2600MHz ±1 %	3	1 kHz 80% AM
3500MHz ±1 %		
5000MHz ±1 %		

The frequency steps : 1 %, Log sweep

Dwell time : 3 sec

Test ports : Enclosure port

9.4 Test Equipment

Test Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
733 Compact Full Anechoic Chamber	Comtest	9708093	N/A	2022/09/08	2023/09/07
Signal Generator	R&S	SMB100A	102385	2022/02/14	2023/02/13
Field Meter	Narda	NBM-520	D-1426	2021/12/11	2022/12/10
Field Probe	Narda	EF0691	H-0199	2021/12/11	2022/12/10
Power Amplifier	MILMEGA	80RF1000-600	1076330	NCR	NCR
Power Amplifier	MILMEGA	AS0860B-50/50	1076334	NCR	NCR
Log Periodic Antenna	AR	ATL80M1G	0345624	NCR	NCR
Broadband Antenna	FRANKONIA	BTA-S	BTA-S-802	NCR	NCR
Test software	Audix	i2	V5.160923	NCR	NCR

Note: No Calibration Required (NCR).

9.5 Generation of the Electromagnetic Field

The electromagnetic field is generated from a computer controlled signal generator. The output power is amplified and then radiated from broadband log periodic antennas. For each sweep a pre-recorded empty chamber calibration file is used to establish the required field strength. When using these files the field strength inside an area of 1.5/1.0 meter x 1.5 meter is in accordance with the standard.

9.6 Test Results

Temperature:	22	°C	Model No.:	F5-7800J3848G16GX2-TZ5RK
Relative Humidity:	55	%RH	Test Date :	2022/11/11
Atmospheric Pressure:	1006	hPa	Test Voltage:	230Vac, 50Hz
Remark:	N/A			

Exposed Side: ☒ Front ☒ Left ☒ Rear ☒ Right

Frequency	Antenna Polarization	Test Level	Test Result	Performance Criterion
80 MHz to 1 GHz	Vertical	3V/m	PASS	А
80 MHz to 1 GHz	Horizontal	3V/m	PASS	А
1800MHz ±1 %	Vertical	3V/m	PASS	А
1800MHz ±1 %	Horizontal	3V/m	PASS	А
2600MHz ±1 %	Vertical	3V/m	PASS	А
2600MHz ±1 %	Horizontal	3V/m	PASS	А
3500MHz ±1 %	Vertical	3V/m	PASS	А
3500MHz ±1 %	Horizontal	3V/m	PASS	А
5000MHz ±1 %	Vertical	3V/m	PASS	А
5000MHz ±1 %	Horizontal	3V/m	PASS	А

10. Electrical Fast Transient/Burst Immunity Test

11. Surge Immunity Test

12. Immunity to Conducted Disturbances, Inducted by Radio-Frequency Fields

13. Power Frequency Magnetic Field Immunity Test

13.1 Purpose

The measurement is for evaluating the performance of EUT, when subject to power frequency magnetic field disturbance.

13.2 Test Set-Up

The EUT was placed on a wooden table above a reference RGP with the coupling loop antenna arrange the EUT on the RGP.

13.3 Test Condition

Test levels for continuous field

Level	Magnetic field strength (A/m)
1	1
2	3
3	10
4	30
5	100
X ⁽¹⁾	Special

Note:

Test levels for short duration: 1s to 3s

Level	Magnetic field strength (A/m)					
1	n.a ⁽²⁾					
2	n.a ⁽²⁾					
3	n.a ⁽²⁾					
4	300					
5	1000					
X ⁽¹⁾	Special					

Note:

^{1. &}quot;x" is an open level. This level can be given in the product specification.

^{1. &}quot;x" is an open level. This level, as well the duration of the test, can be given in this product specification.

^{2. &}quot;n.a" = not applicable

13.4 Test Equipment.

Test Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
Induction Coil Interface	Teseq	INA 2141	1440	2022/09/28	2023/09/27
Magneticfield Coil	Teseq	INA 703	2021	2022/09/28	2023/09/27
Test software	Teseq	Win2120	V 6.00	NCR	NCR

Note: No Calibration Required (NCR).

13.5 Test Result

Temperature:	22	°C	Model No.:	F5-7800J3848G16GX2-TZ5RK
Relative Humidity:	55	%RH	Test Date :	2022/11/11
Atmospheric Pressure:	1006	hPa	Test Voltage:	230Vac, 50/60Hz
Remark:	N/A			

Continuous Field (50 or 60 Hz)					Short Duration				
Level	H.Field (A/m)	Х	Υ	Z	Level	H.Field	Х	Υ	Z
		Performance Criterion			Level	(A/m)	Performance Criterion		
1	1	Α	Α	А	1	N/A	-	-	-
2	3	-	-	-	2	N/A	-	-	-
3	10	-	-	-	3	N/A	-	-	-
4	30	-	-	-	4	300	-	-	-
5	100	-	-	-	5	1000	-	-	-
Х	Special	-	-	-	Х	Special	-	-	-

Note: 1. "-" means not applicable

2. Magnetic field ambient level: 0.03 uT

14. Voltage Dips, Short Interruptions and Voltage Variations Immunity Test

Appendix A: Uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty
Conducted disturbance measurements at a mains port from 9 kHz to 30 MHz using a 50 $\Omega/50~\mu$ H +5 Ω artificial mains network (AMN)	3.08 dB
Conducted disturbance measurements at a telecommunication port from 150 kHz to 30 MHz using an asymmetrical artificial network (AAN)	3.78 dB
Vertically polarized radiated disturbances from 30MHz~1GHz in a open area test site at a distance of 10m	5.18 dB
Horizontally polarized radiated disturbances from 30MHz~1GHz in a open area test site at a distance of 10m	5.05 dB
Vertically polarized radiated disturbances from 30MHz~1GHz in a semi-anechoic chamber at a distance of 3m	5.16 dB
Horizontally polarized radiated disturbances from 30MHz~1GHz in a semi-anechoic chamber at a distance of 3m	5.02 dB
Radiated disturbances from 1GHz~18GHz in a semi-anechoic chamber at a distance of 3m	5.17 dB
HARMONIC	0.39 %
FLICKER	0.17 %
ESD	7.23 %
RS	1.54 dB
RS (Audio)	1.64 dB
EFT	4.30 %
SURGE	4.20 %
cs	1.08 dB
CS (Audio)	1.18 dB
Mag.	13.00 %
DIP	0.87 %
Ring Wave	4.20 %
Immunity to low-frequency signals	0.17%

Appendix B: Photo of EUT

Appendix C1: Conducted Emission Test Set-up

Appendix C2: Radiated Emission Test Set-up (Below 1GHz)

Appendix C3: Radiated Emission Test Set-up (Above 1GHz)

