

TEST REPORT

Reference No. : WTF20F0807652B3R7E

Applicant: : FOSHAN SHUNDE HOMEART ELECTRIC MFG CO.,LTD

Address: NO.7 SHUNYUAN SOUTH ROAD, WU-SHA INDUSTRIAL ZONE,

DALIANG, SHUNDE DISTRICT OF FOSHAN CITY, GUANGDONG,

CHINA

Manufacturer : FOSHAN SHUNDE HOMEART ELECTRIC MFG CO.,LTD

Address: NO.7 SHUNYUAN SOUTH ROAD, WU-SHA INDUSTRIAL ZONE,

DALIANG, SHUNDE DISTRICT OF FOSHAN CITY, GUANGDONG,

CHINA

Sample Name: Hand Blender

Model No.: KY-270, KY-270A, KY-270B, KY-270C, KY-270D, KY-271, KY-271A,

KY-271B, KY-271C, KY-271DKY-272, KY-272A, KY-272B, KY-272C, KY-272D, KY-273, KY-273B, KY-273B, KY-273D, KY-273D, KY-274, KY-274B, KY-274C, KY-274D, KY-275, KY-275B, KY-275B,

KY-275C, KY-275D, WKHBS270RD, WKHBS270BK, WKHBS270WH

Test Requested.....: In accordance with German Food, Articles of Daily Use and Feed Code

of September 1, 2005(LFGB) Section 30 & 31, Council of Europe Resolution CM/Res(2013)9, BfR recommendation and Regulation (EC)

No 1935/2004.

Test Conclusion....: Pass (Please refer to next pages for details)

Date of Receipt sample ... : 2020-07-27

Date of Test 2020-07-27 to 2020-08-06

Date of Issue : 2020-08-07

Test Result: Please refer to next page (s)

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By: Waltek Services (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Compiled by:

Abby.Zhou / Project Engineer

Waltek Services (Foshan) Co., Ltd. http://www.waltek.com.cn

Ding Zhang / Lab Manager

eproved by:

Page 1 of 8

Reference No.: WTF20F0807652B3R7E Page 2 of 8

Test Results:

1. Sensorial Examination

Took Hoods	Result	Maxima na maina ibla limit	
Test Items	The submitted sample	Maximum permissible limit	
Sensorial examination odour	white with 0 win will	2.5	
Sensorial examination taste	TEX ITEX ONLITE WALTER	2.5	

Note:

1. Test method: With reference to DIN 10955: 2004.

2. Scale:

0 = no discernible deviation

1 = barely discernible deviation

2 = weak deviation

3 = clear deviation

4 = strong deviation

2. Extractable Components Test

all Frank Simulation	The Constitution	Result (%)	MDL (0()	Limit (0/)	
Food Simulant	Test Condition -	No.1	MDL (%)	Limit (%)	
Distilled Water	Reflux for 5 hours	0.2	U. 0.1 WILL	0.5	
3% Acetic Acid	Reflux for 5 hours	0.1	0.1	0.5	
10% Ethanol	Reflux for 5 hours	0.1	0.1	0.5	

Note:

- 1. Test Method: With reference to 61st Communication on testing of plastics in Bundesge sundheitsbl 46 (2003) 362.
- 2. "%" = percentage by weight
- 3. MDL= Method Detection Limit
- 4. ND = Not Detected, less than MDL
- 5. The specification was quoted from BfR recommendation XV.

3. Peroxide Value Test

Test Item	Result	* alter white	
	No.1	Mur My Filliam 12	
Peroxide Value	Absent	Absent	

- 1. Test method: With reference to European Pharmacopeia (2005) ANNEX X F, Clause 2.5.5, method A.
- 2. The specification was quoted from BfR recommendation XV.
- 3. Absent = Not Detected

Reference No.: WTF20F0807652B3R7E Page 3 of 8

4. Volatile Organic Compounds

Miles William White	Result (%)	MDL (0/)	Limit (0/)
Test Item	No.1	MDL (%)	Limit (%)
Volatile Organic compounds	0.36	0.05	0.5

Note:

- 1. Test method: With reference to 61st Communication on testing of plastics in Bundesge sundheitsblatt 46 (2003) 362.
- 2. "%" = percentage by weight
- 3. MDL= Method Detection Limit
- 4. The specification was quoted from BfR recommendation XV.

5. Organotin Compounds Content Test

Tool Homo	Result (mg/kg)	MDL (ma/ka)	Live it (see a (le a)	
Test Items	No.1	MDL (mg/kg)	Limit (mg/kg)	
Monobutyltin (MBT)	Absent	0.05	Absent	
Dibutyltin (DBT)	Absent	0.05	Absent	
Tributyltin (TBT)	Absent	0.05	Absent	
Tetrabutyltin (TeBT)	Absent	0.05	Absent	
Monooctyltin (MOT)	Absent	0.05	Absent	
Diotyltin (DOT)	Absent	0.05	Absent	
Triphenyltin (TPhT)	Absent	0.05	Absent	

- 1. Test method: With reference to DIN EN ISO 17353: 2005, analysis was performed by GC-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. MDL= Method Detection Limit
- 4. Absent = Not Detected

Reference No.: WTF20F0807652B3R7E Page 4 of 8

6. Council of Europe Resolution CM/Res (2013)9-Specific Migration of Heavy Metal

Take Hamas Mile	1st+2nd Migration (mg/kg)		AND COMME	TEX LIEX	
Test Items	No.2	No.3	- MDL (mg/kg)	Limit (mg/kg)	
Aluminium (AI)	ND	ND	0.2	35	
Antimony (Sb)	ND ND	ND	0.02	0.28	
Chromium (Cr)	0.08	0.08	0.04	1.75	
Cobalt (Co)	ND ND	ND	0.02	0.14	
Copper (Cu)	ND.	ND	0.2	28	
Iron (Fe)	0.8	0.8	0.4	280	
Manganese (Mn)	ND ND	ND	0.2	12.6	
Molybdenum (Mo)	- ND	ND	0.02	0.84	
Nickel (Ni)	0.04	0.04	0.02	0.98	
Silver (Ag)	ND ND	ND ND	0.02	0.56	
Tin (Sn)	0.5	0.5	0.2	700	
Vanadium (V)	ND	ND	0.01	0.07	
Zinc (Zn)	ND ND	ND Sun	0.2	35	
Arsenic (As)	ND	ND	0.002	0.014	
Barium (Ba)	ND ND	ND	0.2	8.4	
Beryllium (Be)	- ND TO	ND ND	0.01	0.07	
Cadmium (Cd)	ND	ND	0.002	0.035	
Lead (Pb)	ND	ND	0.01	0.07	
Thallium (TI)	_ ND	ND	0.01	0.336	
Mercury (Hg)	ND	ND	0.002	0.021	
Thallium (TI)	et ni ND ni	"ND "	0.0002	0.0007	
Magnesium (Mg)	0.6	0.6	0.2	Mury Ant.	
Titanium (Ti)	ND	ND	0.02	TEX SEX	

Reference No.: WTF20F0807652B3R7E Page 5 of 8

Tage Home	3rd Migration (mg/kg)		with the me	100	
Test Items	No.2	No.3	MDL (mg/kg)	Limit (mg/kg)	
Aluminium (Al)	0.2	ND	0.1	5- 5-	
Antimony (Sb)	ND	ND -	0.01 m	0.04	
Chromium (Cr)	ND ND	0.03	0.02	0.25	
Cobalt (Co)	ND (ND	0.01	0.02	
Copper (Cu)	ND	ND	t cite 0.1	4	
Iron (Fe)	ND	1.8	0.2	40	
Manganese (Mn)	ND ND	ND ND	w 0.1 w	1.8	
Molybdenum (Mo)	ND	ND	0.01	0.12	
Nickel (Ni)	ND	ND	0.01	0.14	
Silver (Ag)	ND	ND	0.01	0.08	
Tin (Sn)	ND	ND	0.1	100	
Vanadium (V)	ND	ND	0.005	0.01	
Zinc (Zn)	ND	ND	0.1	net we 5	
Arsenic (As)	ND W	ND	0.001	0.002	
Barium (Ba)	ND	ND	0.1 w	1.2	
Beryllium (Be)	ND	ND	0.005	0.01	
Cadmium (Cd)	ND	ND ND	0.001	0.005	
Lead (Pb)	ND	ND (0.005	0.01	
Lithium (Li)	ND	ND	0.005	0.048	
Mercury (Hg)	ND	ND	0.001	0.003	
Thallium (TI)	ND	ND	0.0001	0.0001	
Magnesium (Mg)	ND.	ND	0.1	- LIEK SLIEK MITE	
Titanium (Ti)	ND.	ND ND	0.01	111 111 11	

- 1. Test Method: With reference to EN 13130-1:2004, analysis was performed by ICP-OES and ICP-MS.
- 2. Test Condition and simulant: Sample(s) were migrated with 5g/L citric acid at 100°C for 1 hour.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. MDL = Method Detection Limit
- 5. ND = Not Detected (<MDL)
- 6. "--" = Not regulated

Reference No.: WTF20F0807652B3R7E Page 6 of 8

7. Metal Content for Stainless Steel

Test Items	Result	t (%)	The state of the s
	No.2	No.3	Limit (%)
Chromium (Cr)	17.9	17.9	13 M
Tantalum (Ta)	<0.01	<0.01	< 10 ^t ≤10 ^t (10 th (10)
Niobium (Nb)	<0.01	<0.01	≤1
Zirconium (Zr)	<0.01	<0.01	write which will are
Molybdenum (Mo)	0.03	0.03	ret re≤4
Titanium (Ti)	<0.01	<0.01	≤4
Aluminium (AI)	<0.01	<0.01	€4
Copper (Cu)	0.06	0.06	≤4 (1)

- 1. Test Method: Acid digestion, analysis was performed by ICP-OES.
- 2. "%" = percentage by weight and weight
- 3. "≤" = less than or equal to
- 4. "<" = less than
- 5. "≥" = more than or equal to
- 6. The specification was quoted from French Information Note DGCCRF 2004-64.

Reference No.: WTF20F0807652B3R7E

Waltek Services (Foshan) Co., Ltd. http://www.waltek.com.cn

Reference No.: WTF20F0807652B3R7E Page 8 of 8

Photograph of parts tested:

No.	Photo of testing part	Parts Description	Client Claimed Material
Mitek 1 W Whitek	18	Black silicone rubber	Silicone rubber
et van 2 vantif vantif	The 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 21	Silvery metal	Stainless steel
wind with the state of the stat	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 25 75 77	Silvery metal	Stainless steel

===== End of Report =====