

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-EMC180559

Page: 1 of 28

EMC Test Report

Certificate No. TB210528244

Applicant Shenzhen Yipincheng Technology Co., Ltd

Equipment Under Test (EUT)

EUT Name microscope

Model No. inskam303

inskam301, inskam302, inskam306, inskam307, inskam308,

inskam312, inskam314, inskam315, inskam315w,

Series Model No. inskam316, inskam317, inskam318, inskam320, inskam322,

inskam324, inskam326, inskam328, inskam330, inskam332

Brand Name

Receipt Date 2021-05-17

2021-05-18 to 2021-05-26 **Test Date**

Issue Date 2021-05-26

EN 55032:2015 **Standards**

EN 55035:2017

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above. The EUT

technically complies with the 2014/30/EU directive requirements

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-075-3.0

Tel: +86 75526509301

Fax: +86 75526509195

TABLE OF CONTENTS

1.	. GENERAL INFORMATION	••••••	4
	1.1. Client Information		4
	1.2. General Description of EUT (Equi	oment Under Test)	4
	1.4. Block Diagram Showing the Confi	guration of System Tested	5
	1.5. Description of Support Units		6
2.	. TEST RESULTS SUMMARY		9
3.	. TEST SOFTWARE		10
4.	. TEST EQUIPMENT USED		11
5.	. RADIATED EMISSION TEST		12
	5.1 Test Standard and Limit		12
	5.5. Test Data		14
6.	. ELECTROSTATIC DISCHARGE IMMUN	IITY TEST	15
	6.1 Test Requirements		15
	6.2. Test Setup		15
	6.4. Deviation From Test Standard		16
7.	. RADIATED ELECTROMAGNETIC FIEL	D IMMUNITY TEST	17
	7.1. Test Requirements		17
	7.2. Test Setup		17
8.			
9.	. PHOTOGRAPHS - TEST SETUP		23
AT1	TTACHMENT ARADIATED EMISSION TES	T DATA	24
AT1	TTACHMENT BELECTROSTATIC DISCHA	RGE TEST DATA	26
ΔΤΤ	TTACHMENT CRE FIFLD STRENGTH SUS	SCEPTIBILITY TEST DATA	28

Page: 3 of 28

Revision History

Report No.	Version	Description	Issued Date
TB-EMC180559	Rev.01	Initial issue of report	2021-05-26
3000	1000		6000
To Com		COLD STATE	2 (3)2
	833	a compa	MI DE
J. Ellin	(1) In		1802
		CD 73	
Lann.		THE CHAIN	The second
- 13 B		The state of the	10 N
COLUMN TO SERVICE STATE OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE			
A ROLL		THE PARTY OF THE P	
THE REAL PROPERTY.			13
			THE RESIDENCE

Page: 4 of 28

1. General Information

1.1. Client Information

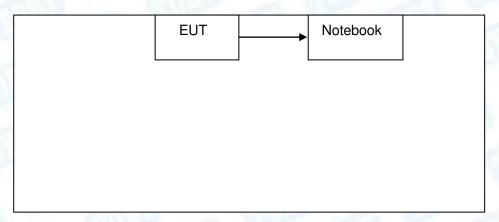
Applicant		Shenzhen Yipincheng Technology Co., Ltd		
Address	•	A902-51, Block ABCD, Building 3, Phase I, Tianan Yungu Industrial Park, Gangtou Community, Bantian Street, Longgang District, Shenzhen Guangdong, China		
Manufacturer	:	Shenzhen Yipincheng Technology Co., Ltd		
Address	:	A902-51, Block ABCD, Building 3, Phase I, Tianan Yungu Industria Park, Gangtou Community, Bantian Street, Longgang Distric Shenzhen Guangdong, China		

1.2. General Description of EUT (Equipment Under Test)

EUT Name	:	microscope			
Model(s)	: (inskam303, inskam301, inskam302, inskam306, inskam307, inskam308, inskam312, inskam314, inskam315, inskam315w, inskam316, inskam317, inskam318, inskam320, inskam322, inskam324, inskam326, inskam328, inskam330, inskam332			
Model Difference	:	All above models are identical in schematic, structure and critical components except for model names.			
Brand Name	:				
Class of EUT		☐ Class A ☐ Class B			
EUT Type	:	☐ Table top ☐ Floor standing ☐ combination			
Fx	:	≤108MHz			
Power Supply: USB Input: DC 5V, 0.5A, 0.25W or DC 3.7V, 800mAh by Li-ion Battery					
Fx: Highest interr	nal fr	requency.			

Page: 5 of 28

1.3. Description of Operating Mode


To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Working Mode

The EUT system operated these modes were found to be the worst case during the pre-scanning test as Following:

For EMI Test					
Final Test Mode Description					
Mode 1 Working Mode					
For EMS Test					
Final Test Mode Description					
Mode 1 Working Mode					

1.4. Block Diagram Showing the Configuration of System Tested

Page: 6 of 28

1.5. Description of Support Units

Equipment Information						
Name	Model	S/N	Manufacturer	Used "√"		
Notebook	161301-CN	15987/00203076	Xiaomi	√		
13 S	100		630	33		

1.6. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test	Parameters	Expanded Uncertainty (U _{Lab})	Expanded Uncertainty (U _{Cispr})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$	$\pm 4.0~\mathrm{dB}$ $\pm 3.6~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	\pm 4.60 dB	N/A
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB	\pm 5.2 dB
Radiated Emission	Level Accuracy: Above 1000MHz	\pm 4.20 dB	N/A
Mains Harmonic	Voltage	±3.11%	N/A
Voltage Fluctuations & Flicker	Voltage	±3.25%	N/A

Page: 7 of 28

1.7. General Performance Criterion

General

General performance criteria are defined in 8.2, 8.3 and 8.4. These criteria shall be used during the testing of primary functions where no relevant annex is applicable.

When assessing the impact of a disturbance on a function, the assessment should take into consideration the function's performance prior to the application of the disturbance and only identify as failures those changes in performance that are a result of the disturbance.

Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Page: 8 of 28

1.8. Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at: 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Page: 9 of 28

2. TEST Results Summary

EMISSION (⊠EN 55032: 2015)				
Description of test items	Standards	Class	Results	
Conducted disturbance at mains terminals	EN 55032: 2015	☐ Class A☐ Class B	N/A	
Conducted disturbance for asymmetric mode	EN 55032: 2015	☐ Class A ☐ Class B	N/A ₍₂₎	
Conducted differential voltage emission	EN 55032: 2015	Class B	N/A ₍₂₎	
Radiated Disturbance	EN 55032: 2015	☐ Class A ☐ Class B	Pass	
Harmonic current emissions	EN 61000-3-2: 2014	☐ Class A ☐ Class D	N/A	
Voltage fluctuation and flicker	EN 61000-3-3: 2013	100	N/A	

Note

- (1) Class A/Class B: Applicable to AC mains power ports
- (2) Class A: Applicable to wired network ports, optical fibre ports with metallic shield or tension members and antenna ports.
 - Class B: Applicable to wired network ports, optical fibre ports with metallic shield or tension members, broadcast receiver tuner ports and antenna ports.
 - Applicable to ports listed above and intended to connect to cables longer than 3 m.
- (3) Class B: Applicable to TV broadcast receiver tuner ports with an accessible connector, RF modulator output ports and FM broadcast receiver tuner ports with an accessible connector.
- (4) Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
 - Class D: Equipment having a specified power less than or equal to600 W of the following types: Personal computers and personal computer monitors and television receivers.

Page: 10 of 28

IMMUNITY (⊠EN 55035: 2017)				
Description of test items	Standards	Results		
Electrostatic Discharge (ESD)	EN 61000-4-2: 2009	Pass		
Continuous RF Electromagnetic Field Disturbances	EN 61000-4-3: 2006+A2:2008+ A2: 2010	Pass		
EFT/B Immunity	EN 61000-4-4: 2012	N/A		
Surge Immunity	EN 61000-4-5: 2014	N/A		
Continuous RF Disturbances	EN 61000-4-6: 2014	N/A		
Power frequency magnetic field	EN 61000-4-8: 2010	N/A ₍₁₎		
Voltage dips, >95% reduction				
Voltage dips, 30% reduction	EN 61000-4-11: 2004	N/A		
Voltage interruptions		1		
Broadband impulse noise disturbances, repetitive Broadband impulse noise disturbances, isolated	EN 61000-4-6: 2014	N/A ₍₂₎		

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Magnetic Emission	EZ-EMC	EZ	CDI-03A2
Disturbance Power	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Harmonic Current	CTS4	CI	4.24.0
Voltage Fluctuation and Flicker	CTS4	CI	4.24.0
Conducted Immunity	IEC/EN 61000-6-4 Application	FRANKONIA	1.1.1
Electrical Fast Transient	lec.control	Nemtest	5.1.1.0
Surge	lec.control	Nemtest	5.1.1.0
Voltage Dip and Interruption	lec.control	Nemtest	5.1.1.0

⁽¹⁾ Not applicable, Applicable only to equipment containing devices intrinsically susceptible to magnetic fields, the EUT is not containing devices susceptible to magnetic fields.

(2) Not applicable, Applicable only to CPE xDSL ports.

Page: 11 of 28

4. Test Equipment Used

Radiation Er	mission Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Jul. 06, 2020	Jul. 05, 2021
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 01, 2020	Feb.28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 01, 2020	Feb.28, 2022
Pre-amplifier	HP	11909A	185903	Feb. 25, 2021	Feb.24, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb.24, 2022
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb.24, 2022
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Discharge In	nmunity Test	•			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
ESD Tester	TESEQ	NSG437	304	Jul. 07, 2020	Jul. 06, 2021
Radiated Im	munity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Vector Signal Generator	Agilent	E4438C	US44271917	Jul. 07, 2020	Jul. 06, 2021
Power meter	Agilent	E4419B	GB40202122	Jul. 07, 2020	Jul. 06, 2021
Power Sensor	Agilent	E9300A	MY41496625	Jul. 07, 2020	Jul. 06, 2021
Power Sensor	Agilent	E9300A	MY41496628	Jul. 07, 2020	Jul. 06, 2021
RF power Amplifier	OPHIR	5225R	1045	Jul. 07, 2020	Jul. 06, 2021
RF power Amplifier	OPHIR	5273R	1018	Jul. 07, 2020	Jul. 06, 2021
Antenna	SCHWARZBECK	STLP9128E- special	STLP9128E s#139	Jul. 07, 2020	Jul. 06, 2021
Antenna	SCHWARZBECK	STLP 9149	STLP 9149 #456	Jul. 07, 2020	Jul. 06, 2021

Page: 12 of 28

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1. Test Standard

EN 55032: 2015

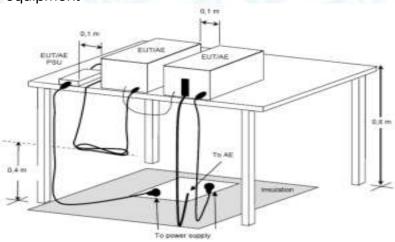
5.1.2. Test Limit

Bellow 1GHz

	Limit (dBμV	//m) (3m)
Frequency	Quasi-peak Level	
	Class A	Class B
30MHz~230MHz	50	40
230MHz~1000MHz	57	47

Remark: 1. The lower limit shall apply at the transition frequency.

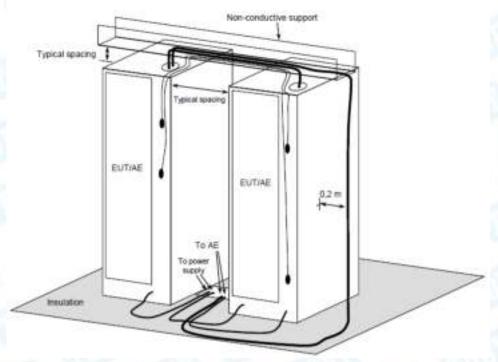
2. The test distance is 3m.

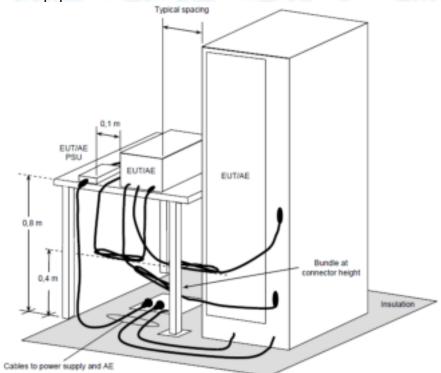

Above 1GHz

_	Limit (dBμV/m) (3m)					
Frequency (GHz)	Class A	Class B				
(3.1.2)	Peak	Average	Peak	Average		
1~3	76	56	70	50		
3~6	80	60	74	54		

Remark: 1. The lower limit shall apply at the transition frequency.

2. The test distance is 3m.


5.2. Test Setup



Page: 13 of 28

For floor standing equipment

☐ For combination equipment

Page: 14 of 28

5.3. Test Procedure

Measurement was performed according to clause 7.3 of CISPR 16-2-3.

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m. The table was rotated 360 degrees to determine the position of the highest radiation. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range.

If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

Highest internal frequency (Fx)	Highest measured frequency for radiated measurement	Measured Bandwidth
Fx ≤ 108 MHz	1 GHz	120kHz
108 MHz < Fx ≤ 500 MHz	2 GHz	1MHz
500 MHz < Fx ≤ 1 GHz	5 GHz	1MHz
Fx > 1 GHz	5*Fx up to a maximum of 6 GHz	1MHz

NOTE 1: For FM and TV broadcast receivers, Fx is determined from the highest frequency generated orused excluding the local oscillator and tuned frequencies.

NOTE 2: For outdoor units of home satell Equipment receiving systems highest measured frequency shall be 18GHz.

5.4. Deviation From Test Standard

No deviation

5.5. Test Data

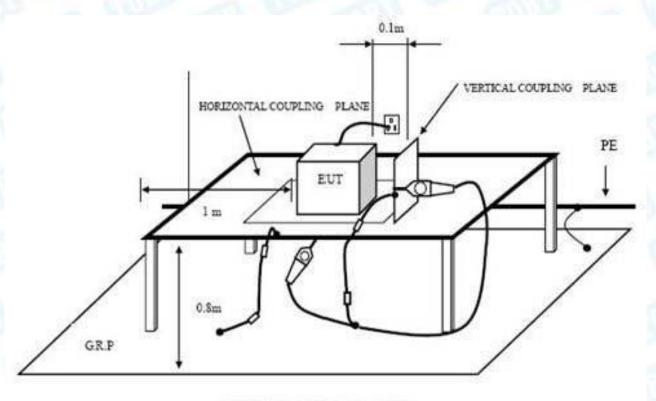
Please refer to the Attachment A.

Page: 15 of 28

6. Electrostatic Discharge Immunity Test

6.1 Test Requirements

6.1.1. Test Standard


EN 55035:2017 (EN 61000-4-2:2009)

6.1.2. Test Level

Discharge Impedance:	330 ohm/ 150pF
Discharge Voltage:	Air Discharge: 2kV/4kV/8Kv (Direct) Contact Discharge: 2kV/4kV (Direct /Indirect)
Polarity:	Positive& Negative
Number of Discharge:	Air Discharge: min.20 times at each test point Contact Discharge: min.200 times in total
Discharge Mode:	Single Discharge
Discharge Period:	1 second minimum

6.1.3. Performance criterion: B

6.2. Test Setup

INDIRECT DISCHARGE SETUP

Page: 16 of 28

6.3. Test Procedure

6.3.1. Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

6.3.2. Contact Discharge:

All the procedure shall be same as air discharge. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

6.3.3. Indirect discharge for horizontal coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

6.3.4. Indirect discharge for vertical coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

6.4. Deviation From Test Standard

No deviation

6.5. Test Data

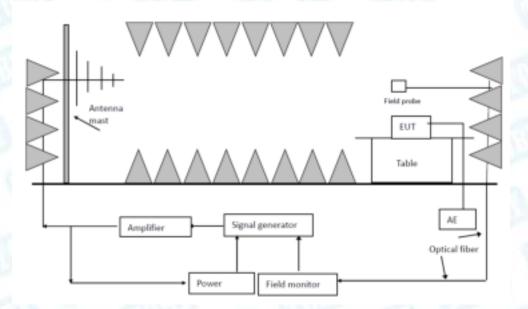
Please refer to the Attachment B.

Report No.: TB-EMC180559 Page: 17 of 28

7. Radiated Electromagnetic Field Immunity Test

7.1. Test Requirements

7.1.1. Test Standard


EN 55035:2017 (EN 61000-4-3)

7.1.2 Test Level

Level	Field Strength V/m
1000	GULL TOUR
2	3
3	10
X	Special

Performance criterion: A

7.2. Test Setup

7.3. Test Procedure

The EUT are placed on a table, which is 0.8 meter high above the ground. The EUT is set 3 meters away from the transmitting antenna, which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna is set on test. Each of the four sides of the EUT must be faced this transmitting antenna and measured individually.

In order to judge the EUT performance, a camera is used to monitor its screen.

All the scanning conditions are as following:

Report No.: TB-EMC180559
Page: 18 of 28

Condition of Test	Remark
Fielded strength	3V/m (Severity Level 2)
Radiated signal	Modulated
Scanning frequency	80-1000MHz, 1800MHz, 2600MHz, 3500MHz, 5000MHz
Sweep time of radiated	0.0015 Decade/s
Dwell time	1 Sec.

7.4. Deviation From Test Standard No deviation

7.5. Test Data

Please refer to the Attachment C.

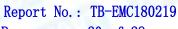

8. Photographs - Constructional Details

Photo 1 Appearance of EUT

Photo 2 Appearance of EUT

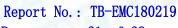
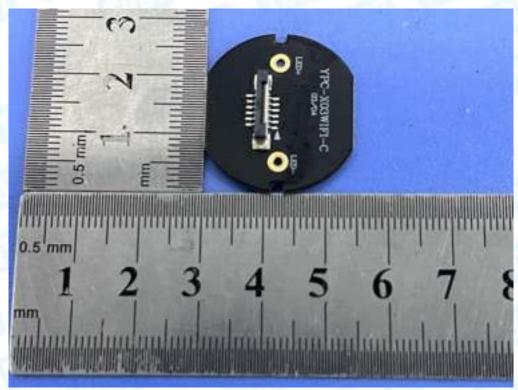
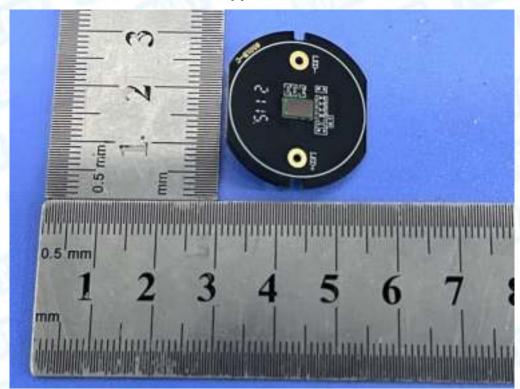

20 of 28 Page:

Photo 3 Appearance of EUT

Photo 4 Internal of EUT





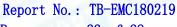
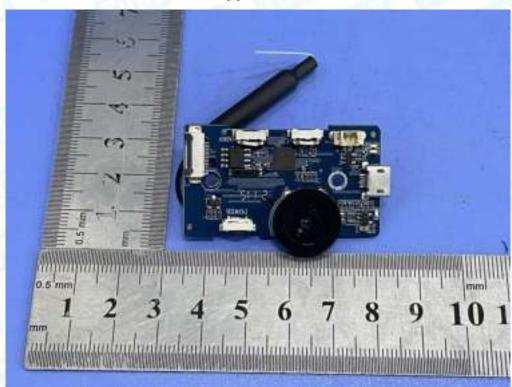
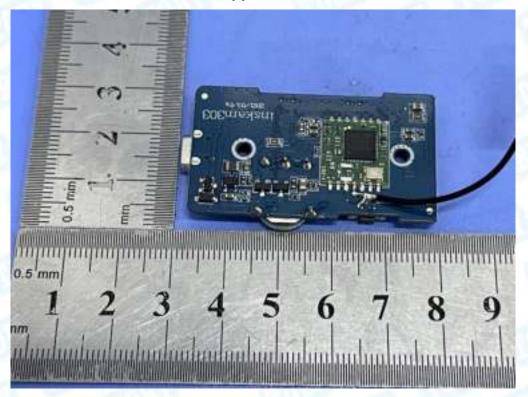

Page: 21 of 28

Photo 5 Appearance of PCB

Photo 6 Appearance of PCB






Page: 22 of 28

Photo 7 Appearance of PCB

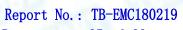
Photo 8 Appearance of PCB

Page: 23 of 28

9. Photographs - Test Setup

Radiated Emission Test Setup

Electrostatic Discharge Test Setup



Page: 24 of 28

Attachment A--Radiated Emission Test Data

Temper	ature:	23	8.9℃	R	elative Humid	lity: 44	1%	
Pressur	e:	10	110 hPa		10		1.32	
Test Vo	Itage:	DO	C 5V	137			-	111
Ant. Pol		Н	orizontal		6/1/7/7		- 10	
Test Mo	de:	Me	ode 1	- KIL				
Remark	:			0.617				
30	and the same of th	427.09	MÅ.	had M	M. Janes	3455632 Class	di 3M Resister	
-20	40	50 60	70	(MHz)	300	400 54	90 600 700	1000.000
No. N		Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 !	77	.8653	58.14	-22.66	35.48	40.00	-4.52	peak
2 !	89	.5899	56.27	-21.88	34.39	40.00	-5.61	peak
3 *	168	8.4138	56.81	-20.52	36.29	40.00	-3.71	peak
4 !	312	2.1792	58.41	-15.88	42.53	47.00	-4.47	peak
5		1.9416		-7.94	40.67	47.00	-6.33	peak
6		5.0878		-5.87	40.04	47.00	-6.96	peak
			ad Level+ Cor				3.00	poun

Page: 25 of 28

Temperature:	23.9℃		Re	elative Humid	dity: 4	14%	
Pressure:	1010	hPa	M	- C3//		-m	
Test Voltage:	DC 5\	/				11110	
Ant. Pol.	Vertic	al	EAD!	Jan 1980		1	
Test Mode:	Mode	1		CIND		- 10	
Remark:		68	1	100	M	13	
80.0 dBuV/m							
30 1 X	Ì		Ž		X X	s8 3M Radiation Margin - 5	48 X
WWW.	WW.	Wyni	wh/	L. Lucher VIII	lullyk	, Alley () (1 ¹	Astropht-
-20	50 70	Wyni	(MHz)	300	400 5	00 600 700	1000.000
30.000 40 50		Reading Level	(MHz) Correct Factor	300 Measure- ment	400 S	00 600 700 Over	1000.000
30.000 40 50 No. Mk. F		_	Correct	Measure-		Over	1000.000
No. Mk. F	req.	Level	Correct Factor	Measure- ment	Limit	Over dB	Detecto
No. Mk. Fr	req. IHz	Level dBuV	Correct Factor	Measure- ment dBuV/m	Limit dBuV/m	Over dB -15.68	Detecto
No. Mk. Fr	req. IHz 0705	dBuV 38.06	Correct Factor dB/m -13.74	Measure- ment dBuV/m 24.32	Limit dBuV/m 40.00	Over dB -15.68 -9.84	Detecto
No. Mk. Fr	req. IHz 0705 0902 4138	dBuV 38.06 53.55 55.89	Correct Factor dB/m -13.74 -23.39 -20.52	Measure- ment dBuV/m 24.32 30.16 35.37	Limit dBuV/m 40.00 40.00	Over dB -15.68 -9.84 -4.63	Detector peak peak
No. Mk. Fr. M. 1 31.0 2 70.0 3 ! 168.4 407.	req. IHz 0705	dBuV 38.06 53.55	Correct Factor dB/m -13.74 -23.39	Measure- ment dBuV/m 24.32 30.16	Limit dBuV/m 40.00	Over dB -15.68 -9.84 -4.63 -10.41	Detector peak

Attachment B--Electrostatic Discharge Test Data

Temperature : 23.7° C Humidity : 44%

Power supply: DC 5V Test Mode: Mode 1

Required Performance Criteria: B

Air Discharge: ±2/±4/±8kV Contact Discharge: ±2/±4kV

Location	Test Level (kV)	Judgment	Resu
A1		A	
A2		А	100
A3	0 27 4 27 0 27	Α	111
A4	± 2 kV ± 4 kV ± 8 kV	А	
A5		A	PASS
A6	COUNTY FOR	А	CI
HCP	± 4 kV	A	100
VCP	±4kV	Α	-50

Test Location Photos A2

Note:

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

Page: 28 of 28

Attachment C--RF Field Strength Susceptibility Test Data

Temperature	: 23.8	3℃	(II)	إلا	Humidi	ty :	46%	, D	- O
Power supply	: DC	5V	M	7 6	Test Mo	ode :	Mod	le 1	III 15
Required Perfo	rmanc	e Crite	eria: A	041					40 m
Modulation: AM	80%,	Field	streng	th: 3V/	m, Pul	lse: 1 k	Hz.	S. 8	
Same of	Actual Performance Criteria Frequency Range: 80~1000MHz							-	3 000
Antenna								Result	
Polarity	10	EUT Position							
ALL DO	Front		F	Right	F	Rear		.eft	_a v
Н		A	Α			Α	A		PASS
V		A		Α	200	Α	8	A	PASS
				F					
J. FRIDE				Freq	uency				
FUT Desilies	1800	MHz 2600MHz 3500MHz 5000MHz)MHz	D. William				
EUT Position		00	Α	ntenna	nna Polarity			Result	
TO	Н	V	н	V	H V H V				
Front	Α	Α	Α	Α	Α	Α	Α	A	PASS
Right	Α	A	A	A	Α	Α	Α	Α	PASS
Rear	Α	Α	Α	Α	Α	Α	A	A	PASS
Left	Α	Α	Α	Α	Α	Α	Α	A	PASS

Remark:

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

----END OF REPORT----