V2.0		Shenzhen POCE Technology Co., Ltd. Report NO.: POCE210325025KRE-R1					
EMC TEST REPORT ETSI EN 301 489-1 V2.2.3 (2019-11) ETSI EN 301 489-5 V2.2.1 (2019-04)							
Report Reference No.	:	POCE210325025KRE-R1					
Applicant's Name Address of Applicant	•••	Shenzhen Sunjet Electronic Co., Ltd West, 3 rd floor, Building 1, Xinkecheng Industry Park, No. 51, Dabao Road, District 28, Xinan Street, Baoan District, Shenzhen City, Guangdong province, China					
Test Firm Address of Test Firm	0 0 0	Shenzhen POCE Technology Co., Ltd. 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China					
Test Specification Standard	• •	ETSI EN 301 489-1 V2.2.3 (2019-11) ETSI EN 301 489-5 V2.2.1 (2019-04)					
Product Name	•	walkie talkie					
Model/Type Reference	•	T388					
Listed Models	0 0	N/A					
Date of Receipt	•	Apr. 06, 2021					
Date of Test	6 0	Apr. 06, 2021 Apr. 08, 2021					
Data of Issue	:	Apr. 08, 2021					
Result	:	PASS					
Compiled by:		Supervised by:					

Amy Zhu/ File administrators

Stone Yin/ Technique principal

Bill Yuan Mahage

Shenzhen POCE Technology Co., Ltd.All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen POCE Technology Co., Ltd. Is acknowledged as copyright owner and source of the material. Shenzhen POCE Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context

 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755-29113252
 E-mail:service@poce-cert.com
 http://www. poce-cert.com
 Page 1 of 28

 E-mail:service@poce-cert.com

Revision History Of Report

Version	Descript	ion	REP	ORT No.	Issu	e Date
V2.0			Update POCE210325025KRE-R1		Apr. 08, 2021	
CE	CE	CE	E.	pu po	UL D	OCE
OF T	PC		POCE	DOCE	DOE '	-5
POUL	OCE	OCE	- CF	FCF	00	POCE
OCE	SE F		POUL	DOCE	DOCE	OF

NOTE1:

V2.0

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EU Directives.

NOTE2:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

CE

Report NO.: POCE210325025KRE-R1

Table of Contents

V2.0

1.1	Test Standards		PU	POUL	00
1.2	Summary of test result	POCE	POCE	-OCE	
	ERAL INFORMATION				
GEN	ERAL INFORMATION			2005	2
2.1	Client Information	-00	E	-E FU	
2.2	Environmental Conditions	-00-	<u></u>	00	3E
2.3	Description of Device (EUT)	00-00	CE.	-CE	20
2.4	Description of Test Modes		P	P	000
2.5	Equipments Used during the lest				
2.6	Test Lab Information	ACE		<u> </u>	pur
2.7	Statement Of The Measurement Uncertainty-	40	PUU	POCE	
FILO	EMISSIONS MEASUREMENT METHODS AND F				
3.1	Radiated Emission				
3.2	Conducted Emission (AC Mains)	-00	E	-E	2
іммс	JNITY TEST METHODS AND RESULTS	PUS	pO	00	OF
4.1	Electrostatic Discharge				
4.2	RF Field Strength Susceptibility Test				
PHOT	TOGRAPHS OF TEST	TOUT	-CE	<u></u>	<u>p0</u> ,
		PUS		POCE	

Shenzhen POCE Technology Co., Ltd. Report NO.: PO

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

ETSI EN 301 489-1 V2.2.3 (2019-11) -- ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard for ElectroMagnetic Compatibility

ETSI EN 301 489-5 V2.2.1 (2019-04) -- ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 5: Specific conditions for Private land Mobile Radio (PMR) and ancillary equipment (speech and non-speech) and Terrestrial Trunked Radio (TETRA);

1.2 Summary of test result

ETSI EN 301 489-1/ Requirements

00- 00E 0E	Emission	puu	2004
PUT POUL	Emission	2	PU
Conducted Emission(AC Mains)	ETSI EN301 489-1 V	2.2.3 Clause 7.1	PASS
Radiated Emission	ETSI EN301 489-1 V	2.2.3 Clause 7.1	PASS
Conducted Emission (Telecommunication Ports)	ETSI EN301 489-1 V	2.2.3 Clause 7.1	N/A
Harmonic Current Emissions	ETSI EN301 489-1 V	2.2.3 Clause 7.1	N/A
Voltage Fluctuations and Flicker	ETSI EN301 489-1 V	2.2.3 Clause 7.1	N/A
POCE	Immunity	PO PC	P
Electrostatic Discharge	ETSI EN301 489-1 V	2.2.3 Clause 7.2	PASS
RF Electromagnetic Field	ETSI EN301 489-1 V	2.2.3 Clause 7.2	PASS
Fast Transients Common Mode	ETSI EN301 489-1 V	2.2.3 Clause 7.2	o D ^O N/A
Surges	ETSI EN301 489-1 V	2.2.3 Clause 7.2	N/A
RF Common Mode 0.15 MHz to 80 MHz	ETSI EN301 489-1 V2	2.2.3 Clause 7.2	N/A
Transients and Surges	ETSI EN301 489-1 V	2.2.3 Clause 7.2	N/A
Voltage Dips and Interruptions	ETSI EN301 489-1 V2	2.2.3 Clause 7.2	N/A

Note: N/A means this test item is not applicable for this device.

Note: This device also belong to information technology equipment, and most of EN55032 and EN55035's test items are same with draft ETSI EN301 489's so most of EN55032 and EN55035's tests were performed together with draft EN301 489's test.

Shenzhen POCE Technology Co., Ltd. Report NO.: POCE210

2 GENERAL INFORMATION

2.1 Client Information

Applicant

V2.0

Address

Shenzhen Sunjet Electronic Co., Ltd West, 3rd floor, Building 1, Xinkecheng Industry Park, No. 51, Dabao Road, District 28, Xinan Street, Baoan District, Shenzhen City, Guangdong province, China

Manufacturer

Shenzhen Sunjet Electronic Co., Ltd

Address

West, 3rd floor, Building 1, Xinkecheng Industry Park, No. 51, Dabao Road, District 28, Xinan Street, Baoan District, Shenzhen City, Guangdong province, China

2.2 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

	Normal Temperature:	OF	15°C -35°C	
CE	Relative Humidity	pour	35%-55 %	
	Air Pressure	2008	101KPa	PI
and the second				

2.3 Description of Device (EUT)

Product Name:	walkie talkie
Model/Type reference:	T388
Serial models:	I POUL POCE DOCE DOCE
Trade Name	1 DOGE DOE POUL
Power supply:	DC 6.0V battery (AAA*4)
HW/SW:	V01 / V1.0
SRD	
Frequency Range:	446.00625 –446.09375MHz
Modulation:	FM-F3E
Operation frequency:	12.5KHz
Channel number:	Spring antenna
Operating frequency:	0dBi

2.4 Description of Test Modes

The EUT has been tested under typical operating condition. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode

101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Tel: +86-755-29113252Tel: +86-755-29113252E-mail:service@poce-cert.comhttp://www.poce-cert.comPage 5 of 28

5	V2.0	TOCE	Shenzhen POCE Technology Co., Ltd.	Repo	ort NO.: POCE210	325025KRE	-R1
	EMICE	POCF	Mode 1: Standby mode Mode 2: Operating mode	OCE	POCE	POCE	
	EMSOCE	PO	Mode 1: Standby mode Mode 2: Operating mode	POCE	POCE	POC	

Note: In mode1 and mode 3, the machine is powered on but in standby mode, so the radiation is very good and the data is not recorded in the report, The report only shows the worst mode2 data tested.

NCE DE	Report record test pattern data	
	Test Mode	
EMI	Mode 2: Operating mode	
EMS	Mode 2: Operating mode	
Equipments Used d	uring the Test	

2.5 Equipments Used during the Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due
Test Receiver	Rohde & Schwarz	ESCI 3	101431	Dec. 10, 2020	1 Year
L.I.S.N	Rohde & Schwarz	ESH3-Z5	831.5518.52	Dec. 10, 2020	1 Year
50ΩCoaxial Switch	Anritsu	MP59B	M20531	N/A	N/A
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100006	Dec. 10, 2020	1 Year
Voltage Probe	Rohde & Schwarz	TK9416	N/A	Dec. 10, 2020	1 Year
	Test Receiver L.I.S.N 50ΩCoaxial Switch Pulse Limiter	Test ReceiverRohde & SchwarzL.I.S.NRohde & Schwarz50ΩCoaxial SwitchAnritsuPulse LimiterRohde & Schwarz	Test ReceiverRohde & SchwarzESCI 3L.I.S.NRohde & SchwarzESH3-Z550ΩCoaxial SwitchAnritsuMP59BPulse LimiterRohde & SchwarzESH3-Z2	Test ReceiverRohde & SchwarzESCI 3101431L.I.S.NRohde & SchwarzESH3-Z5831.5518.5250ΩCoaxial SwitchAnritsuMP59BM20531Pulse LimiterRohde & SchwarzESH3-Z2100006	Test Receiver Rohde & Schwarz ESCI 3 101431 Dec. 10, 2020 L.I.S.N Rohde & Schwarz ESH3-Z5 831.5518.52 Dec. 10, 2020 50ΩCoaxial Switch Anritsu MP59B M20531 N/A Pulse Limiter Rohde & Schwarz ESH3-Z2 100006 Dec. 10, 2020

Radiated Emission

Na						
ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva
ໍ 1	Spectrum Analyzer	Agilent	E4408B	CFG006	Dec. 10, 2020	1 Year
2	Test Receiver	R&S	ESCI	101431	Dec. 10, 2020	1 Year
3	Bilog Antenna	Model JB6	CBL6111D	A090414	Dec. 10, 2020	1 Year
4	50 Coaxial Switch	Anritsu Corp	MP59B	6100237248	Dec. 10, 2020	1 Year
5	EMI Power Line Filter	DUOJI EME	FNF 201 BQ6686	N/A	Dec. 10, 2020	1 Year
6	EMI Power Line Filter	JIANLI	DL-40C	N/A	Dec. 10, 2020	1 Year
7	Cable	Schwarzbeck	AK9513	ACRX1	Dec. 10, 2020	1 Year
8	Cable	Rosenberger	N/A	FP2RX2	Dec. 10, 2020	1 Year
9	Cable	Schwarzbeck	AK9513	CRPX1	Dec. 10, 2020	1 Year
10	Cable	Schwarzbeck	AK9513	CRRX2	Dec. 10, 2020	1 Year
11	Signal Generator	HP	8648A	3625U0057	Dec. 10, 2020	1 Year
JUL	OCE	25	PO	000-	TOCE	T

 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755-29113252
 E-mail:service@poce-cert.com
 http://www.poce-cert.com
 Page 6 of 28

Report NO .: POCE210325025KRE-R1

Item	Equipment	Manufacturer	Model No.	Factory Number	Last Cal.	Cal.Due
OCT	Coupling decoupling network	SCHAFFNER	M016	20812	Dec. 10, 2020	1 Year
2	PC	N/A	P2L97	N/A	Dec. 10, 2020	1 Year

Electrical Fast Transient /Burst Immunity Test

Item	Equipment	Manufacturer	Model No.	Factory Number	Last Cal.	Cal.Due
1.	Burst Tester	HTEC 2005	HEFT 51	144303	Dec. 10, 2020	1 Year
2.	Coupling Clamp	HTEC	IP-4A	147147	Dec. 10, 2020	1 Year
CE	I- PL	POUL POUL	POCE	POCE	OCE	PU
Elec	trostatic Discharge	DOUL DOCE	-CE		PUL	POUL

Electrostatic Discharge

V2.0

Ele	ctrostatic Discharge					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva I
1	ESD Tester	PRIMA	61002AG	PR14042705	Dec. 10, 2020	1 Year
2	Audio Analyzer	R&S	UPV	100419	Dec. 10, 2020	1 Year
-	CE I	- 40 5	SG-S-	DOF	ACE	-5

RF Field Strength Susceptibility

RF	Field Strength Susce	otibility	P4.			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva
24	Signal Generator	HP H	8648A	3625U00573	Dec. 10, 2020	1 Year
2	Amplifier	AR 000	500A100	17034	NCR	NCR
3	Amplifier	AR	100W/1000M	17028	NCR	NCR
4	Isotropic Field Monitor	AR	FM2000	16829	NCR	NCR
5	Isotropic Field Probe	PO AR 🛛	FP2000	16755	Dec. 10, 2020	1 Year
6	Biconic Antenna	EMCO	3108	9507-2534	NCR 😡	NCR
7	Log-periodic Antenna	AR	AT1080	16812	NCR	NCR
8	Audio Analyzer	R&S	UPV	100419	Dec. 10, 2020	1 Year
	-004	CK.		PO	200-	alie

Injected Current Susceptibility Test

Item	Equipment	Manufacturer	Model No.	Factory Number	Last Cal.	Cal. Interv al
1.	Simulator	EMTEST	CWS500C	0900-12	Dec. 10, 2020	1 Year
2.	CDN	EMTEST	CDN-M2	5100100100	Dec. 10, 2020	1 Year
3.	CDN	EMTEST	CDN-M3	0900-11	Dec. 10, 2020	1 Year
4.	Injection Clamp	EMTEST	F-2031-23MM	368	Dec. 10, 2020	1 Year
5.	Attenuator	EMTEST	ATT6	0010222A	Dec. 10, 2020	1 Year
CE	POCE POC POCE PC	DCE POCE	POCE	POCE	POCE	DCE .

2.6 Test Lab Information

V2.0

CNAS Registration Number is L8229

Shenzhen POCE Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Jan. 06, 2016.

VCCI Membership No.: 3941

The 3m Semi-anechoic chamber of Shenzhen POCE Technology Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.:R-3941. Date of Registration: Oct. 22, 2018.

2.7 Statement Of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented .quality system according to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	±2.50dB	(1)
Radiated Emission	1~12.75GHz	±3.20dB	(1)
Conducted Emission	0.15~30MHz	±2.64dB	(1)

) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Harmonic Current Emission

The measurement uncertainty is evaluated as \pm 1.4 %.

Voltage Fluctuations and Flicker

The measurement uncertainty is evaluated as \pm 1.2 %.

Electrostatic Discharge

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in ESD testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant ESD standards. The immunity test signal from the ESD system meet the required specifications in IEC 61000-4-2 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.22% and 2.36%.

RF Electromagnetic Field

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in RS testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant RS standards. The immunity test signal from the RS system meet the required specifications in IEC 61000-4-3 through the calibration for the uniform field strength and monitoring for the test level with the uncertainty evaluation report for the electrical filed strength as being 2.50 dB.

Fast Transients Common Mode

101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Tel: +86-755-29113252E-mail:service@poce-cert.comhttp://www.poce-cert.comPage 8 of 28

Report NO.: POCE210325025KRE-R1

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in EFT/Burst testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant EFT/Burst standards. The immunity test signal from the EFT/Burst system meet the required specifications in IEC 61000-4-4 through the calibration report with the calibrated uncertainty for the waveform of voltage. Frequency and timing as being 1.33% and 2.50%.

RF Common Mode

V2.0

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in CS testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant CS standards. The immunity test signal from the CS system meet the required specifications in IEC 61000-4-6 through the calibration for unmodulated signal and monitoring for the test level with the uncertainty evaluation report for the injected modulated signal level through CDN and EM Clamp/Direct Injection as being 2.46 dB and 2.85 dB.

Voltage Dips and Interruption

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in DIP testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant DIP standards. The immunity test signal from the DIP system meet the required specifications in IEC 61000-4-11 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.95% and 3.24%.

Transients and Surges

As what is concluded in the document from Note2 of clause 5.4.6.2 of ISO/IEC 17025: 1999[2], the requirements for measurement uncertainty in Transients and Surges testing are deemed to have been satisfied, and the testing is reported in accordance with the relevant DIP standards. The immunity test signal from the Transients and Surges system meet the required specifications in ISO 7637-2 through the calibration report with the calibrated uncertainty for the waveform of voltage and timing as being 1.25% and 2.75%.

3 EMC EMISSIONS MEASUREMENT METHODS AND RESULTS

3.1 Radiated Emission

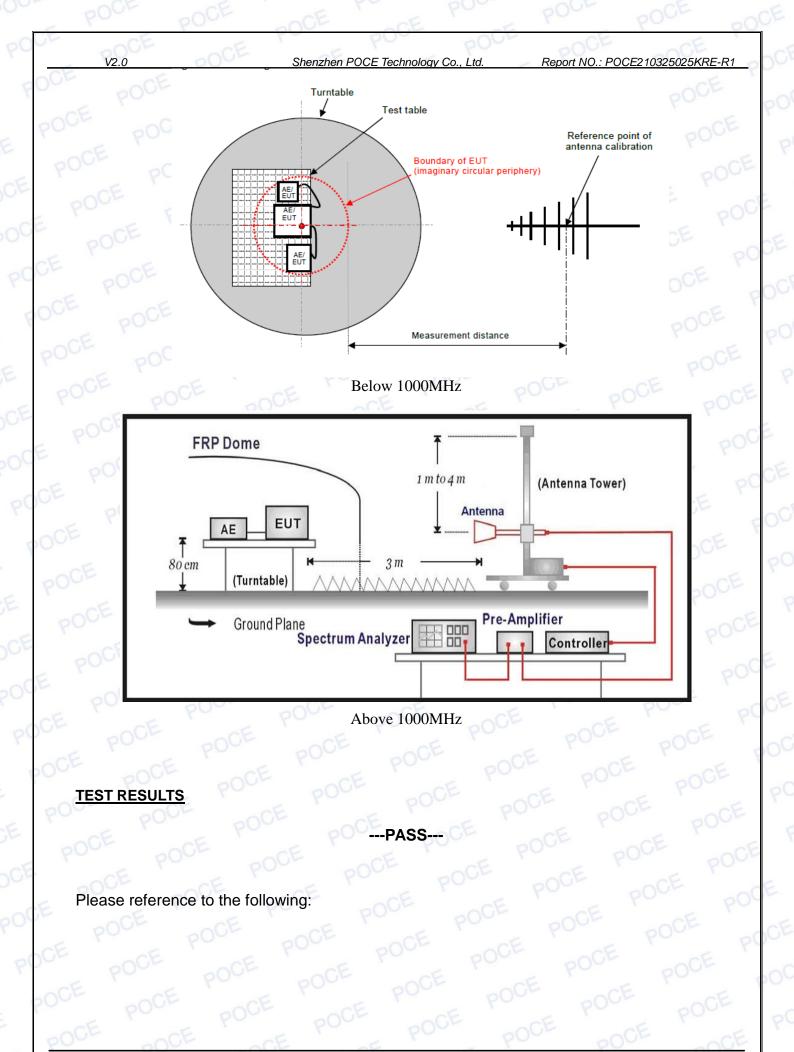
Block Diagram of Test

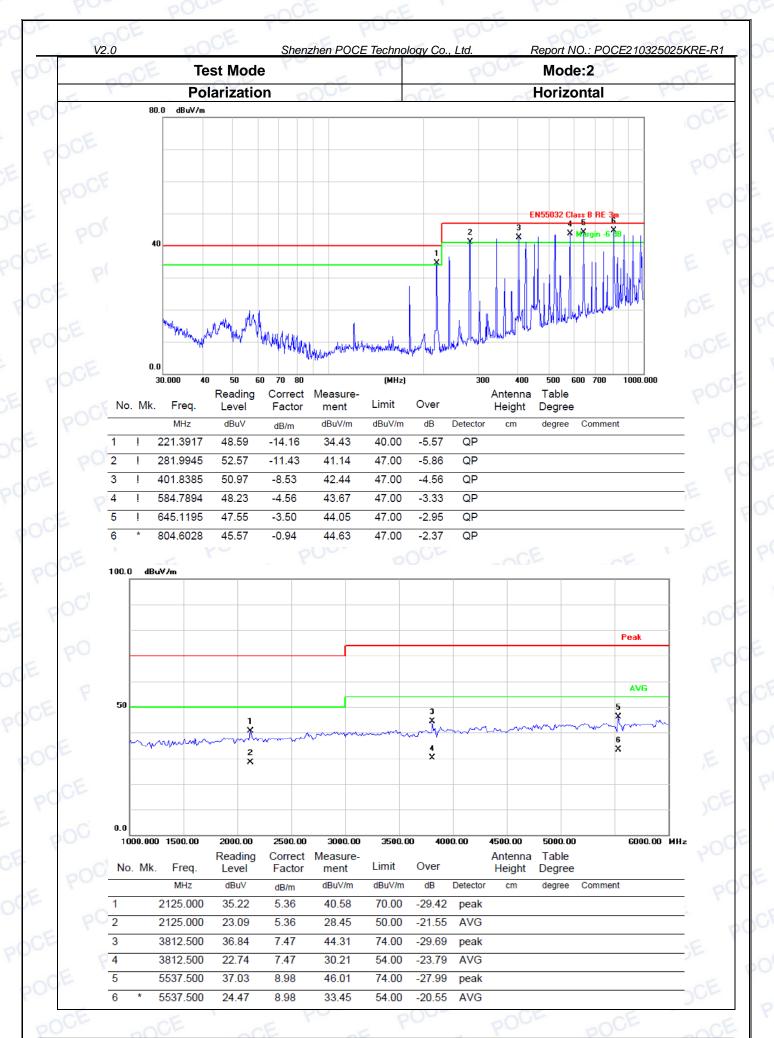
V2.0

LIMITS OF RADIATED EMISSION MEASUREMENT (Below 1000MHz)

FREQUENCY (MHz)	Class B(at 10m)	Class B (at 3m)
FREQUENCT (MITZ)	dBuV/m	dBuV/m
30 – 230	30 30	40
230 – 1000	37	47000000

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

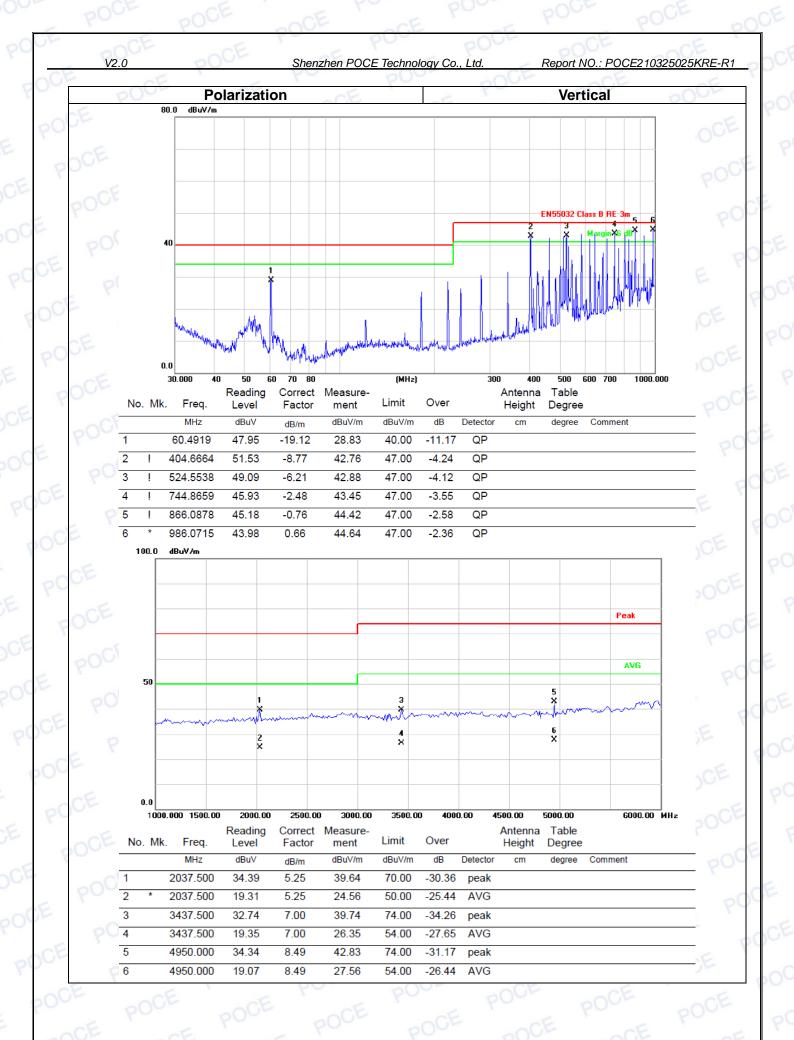

	Class A (at 10m) dBuV/m		Class B (at 3m) dBuV/m		
FREQUENCY (MHz)	Peak	Avg	Peak	Avg	
1000-3000	76	56	70	50	
3000-6000	80	60	74	54	


Notes: (1)The limit for radiated test was performed according to as following: Draft ETSI EN 301 489-1/ EN55032:2015 (2)The tighter limit applies at the band edges.

TEST PROCEDURE

- The EUT was placed on the top of a rotating table 3 meters away from the receiver antenna and 0.8 meters a) above the ground at a 9X9X6 anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The height of the equipment shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. b) Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode c) pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak/Average detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak/Average Mode Limit, the EUT Jasure Ji l'est Photos. shall be deemed to meet QP/AV Limits and then no additional QP/AV Mode measurement performed.
- For the actual test configuration, please refer to the related Item -EUT Test Photos.

TEST SETUP



 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755-29113252
 E-mail:service@poce-cert.com

 28

 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755-29113252
 E-mail:service@poce-cert.com
 http://www.poce-cert.com
 Page 13 of

 28

3.2 Conducted Emission (AC Mains)

LIMIT

V2.0

FREQUENCY (MHz)	Class A (dBuV)		Class B (dBuV)		
	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50 -5.0	73.00	60.00	56.00	46.00	
5.0 -30.0	73.00	60.00	60.00	50.00	

Note (1)The tighter limit applies at the band edges.

(2)The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

TEST PROCEDURE

- a) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d) LISN at least 80 cm from nearest part of EUT chassis.

Teat Results

N/A

4 IMMUNITY TEST METHODS AND RESULTS

Test configuration

V2.0

A. General Requirements (ETSI EN 301489-1):

- The performance criteria criteria are used to take a decision on whether radio equipment passes or fails immunity tests.
- For the purpose of the present document four categories of performance criteria apply:
- Performance criteria for continuous phenomena applied to transmitters and receivers
- Performance criteria for transient phenomena applied to transmitters and receivers
- Performance criteria for equipment which does not provide a continuous communication link
- Performance criteria for ancillary equipment tested on a stand alone basis
- (1) Performance criteria for continuous phenomena applied to transmitters and receivers If no further details are given in the relevant part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment, the following general performance criteria for continuous phenomena shall apply.

During and after the test, the equipment shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the equipment is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the test the EUT shall not unintentionally transmit or change its actual operating state and stored data.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.

(2) Performance criteria for transient phenomena applied to transmitters and receivers If no further details are given in the relevant part of ETSI EN 301 489 series [i.13] dealing with the particular type of radio equipment, the following general performance criteria for transient phenomena shall apply.

For surges applied to symmetrically operated wired network ports intended to be connected directly to outdoor lines the following criteria applies:

- e) For products with only one symmetrical port intended for connection to outdoor lines, loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A SW reboot is not allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.
- f) For products with more than one symmetrical port intended for connection to outdoor lines, loss of function on the port under test is allowed, provided the function is self-recoverable. A SW reboot is not allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost. For all other ports the following applies:
- g) After the test, the equipment shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the equipment is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

Report NO.: POCE210325025KRE-R1

- During the EMC exposure to an electromagnetic phenomenon, a degradation of performance is, however, allowed. No change of the actual mode of operation (e.g. unintended transmission) or stored data is allowed.
- If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.
- (3) Performance criteria for equipment which does not provide a continuous communication link For radio equipment which does not provide a continuous communication link, the performance criteria described in clauses 6.1 and 6.2 are not appropriate, in these cases the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests. The performance specification shall be included in the product description and documentation. The related specifications set out in clause 5.3 have also to be taken into account.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in clauses 6.1 and 6.2.

(4) Performance criteria for ancillary equipment tested on a stand alone basis

If ancillary equipment is intended to be tested on a standalone basis, the performance criteria described in clauses 6.1 and 6.2 are not appropriate, in these cases the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests. The performance specification shall be included in the product description and documentation. The related specifications set out in clause 5.3 have also to be taken into account.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in clauses 6.1 and 6.2.

. ETSI EN 301 489-5

General performance criteria

The equipment shall meet the minimum performance criteria as specified in clauses 6.1, 6.2, 6.3 and 6.4.

The establishment of the communication link at the start of the test, its maintenance and the assessment of the recovered signal are used as the performance criteria for the evaluation of the essential functions of the equipment during and after the test.

If an equipment is of a specialized nature and the performance criteria specified in the table are not appropriate the manufacturer shall declare a substituted specification for an acceptable performance level or performance degradation as required by the present document. The performance specification shall be included in the test report and the product description and documentation.

The equipment shall meet the minimum performance criteria as specified in clauses 6.1, 6.2, 6.3 and 6.4.

A portable equipment powered by the battery in the vehicle shall fulfil the applicable requirements in ETSI EN 301 489-1 [1] for vehicular mobile equipment.

A portable or mobile equipment powered by AC mains shall fulfil the applicable requirements in ETSI EN 301 489-1 [1] for base station equipment, although the tests performed are only those applicable to the input/output arrangements of the equipment, the performance criteria will remain as the origin class for the equipment.

Performance criteria for Continuous phenomena applied to Transmitters (CT)

Report NO .: POCE210325025KRE-R1 For speech equipment, the distortion of the audio signal shall be measured during each individual exposure in the test sequence and shall not exceed 25 % measured in a post detection bandwidth determined by a first order band pass filter with a 3 dB bandwidth of 300 Hz to 3 kHz, without the use of psophometric weighting filter.

For equipment which can be measured using continuous bit streams, a bit error shall not exceed 1 × 10-2

For other non-speech equipment four messages out of five or 90 % of the transmitted symbols shall be received correctly.

At the conclusion of the test the EUT shall operate as intended with no loss of user control functions or stored data, and the communication link shall have been maintained during the test.

Where the EUT is a transmitter only and can be operated in standby mode, tests shall be repeated with the EUT in this mode to ensure that unintentional transmission does not occur.

Performance criteria for Transient phenomena applied to Transmitters (TT)

V2.0

At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link.

At the conclusion of the total test comprising the series of individual exposures the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer, and the communication link shall have been maintained during the test.

Where the EUT is a transmitter only and can be operated in standby mode, tests shall be repeated with the EUT in this mode to ensure that unintentional transmission does not occur.

Performance criteria for Continuous phenomena applied to Receivers (CR) For speech equipment, the distortion of the audio signal shall be measured during each individual exposure in the test sequence and shall not exceed 25 % measured in a post detection bandwidth determined by a first order band pass filter with a 3 dB bandwidth of 300 Hz to 3 kHz, without the use of psophometric weighting filter.

For equipment which can be measured using continuous bit streams, the bit error rate shall not exceed 10-2.

For other non-speech equipment four messages out of five or 90 % of the transmitted symbols shall be received correctly.

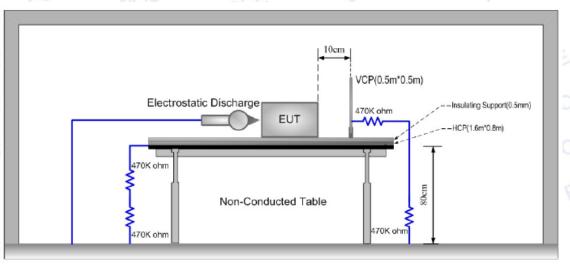
At the conclusion of the test the EUT shall operate as intended with no loss of user control functions or stored data, and the communication link shall have been maintained during the test. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

Performance criteria for Transient phenomena applied to Receivers (TR) At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link.

At the conclusion of the total test comprising the series of individual exposures the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer, and the communication link shall have been maintained during the test.

Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com Page 17 of


Report NO.: POCE210325025KRE-R1

4.1 Electrostatic Discharge

V2.0

TEST SPECIFICATION	POUL POUL POCE POCE
Basic Standard:	IEC/EN 61000-4-2
Discharge Impedance:	330 ohm / 150 pF
Required Performance	B POUL POUL POCE DOCE
Discharge Voltage:	Air Discharge:2kV/4kV/8kV (Direct) Contact Discharge:2kV/4kV (Direct/Indirect)
Polarity:	Positive & Negative
Number of Discharge:	Air Discharge: min. 20 times at each test point Contact Discharge: min. 200 times in total
Discharge Period:	1 second minimum

Block diagram of test setup

Ground Reference Plane

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

Severity Levels and Performance Criterion

Severity level

 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755-29113252
 E-mail:service@poce-cert.com
 http://www.poce-cert.com
 Page 18 of

 28

/2.0	000	Shenzhen POCE Technology Co	., Ltd. Report NO.: POCE210325	5025KRE-R1
PO	Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)	POCE
D	DCE1	±2	POCE ±2 DOCE	POCE
3	2	P0±4 P00	POCE ±4	-CE
E	3	pour pto po	CE C±8	POU
OF	P04	±800	±15	E POC
	X	Special	Special	PC

The test method shall be in accordance with CENELEC EN 61000-4-2 [2], clause 8.

Test Procedure

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

a) Contact discharge was applied to conductive surfaces and coupling planes of the EUT. During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second. The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three test points shall each receive at least 50 direct contact discharges.

If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

Air discharges at insulation surfaces of the EUT. It was at least ten single discharges with positive and negative at the same selected point. POCE POCE POC POCE POCE POC POCE POCE POCE POCE

est Results

101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-29113252 E-mail:service@poce-cert.com http://www.poce-cert.com Page 19 of

Report NO.: POCE210325025KRE-R1

Direct discharge				
Type of discharge	Discharge voltage (KV)	Observations Performance	Criteria Level	Result
Contact	CE ±2	A	POB	DOCE
discharge	± 4	POUL A DOCE	BOE	-CF
PUC	±2,000	A	В	Pass
Air discharge	DOCE ±4	A	BOCC	20
E	±8	POB	DOE B OCF	
Indirect discharge				
Type of discharge	Discharge voltage (KV)	Observations Performance	Criteria Level	Resul
	±2	A	POUB	DCF
HCP (6 sides)	±4	A poor	BE	Door
VCD (4 sides)	±2	DOCE A	B	Pass
VCP (4 sides)	DOCE ±4 OCE	A	В	POCI

Please refer to the following :

V2.0

Note1: The EUT can maintain communication link and not operate unintentionally during the test also can operate without any loss of user control functions after test.

 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755-29113252
 E-mail:service@poce-cert.com
 http://www.poce-cert.com
 Page 20 of

 28

Report NO.: POCE210325025KRE-R1

4.2 RF Field Strength Susceptibility Test

TEST SPECIFICATION

V2.0

	PUT PUT DOUT DOCK
Basic Standard:	IEC/EN 61000-4-3
Required Performance	A F PO POUL POCE DOG
Frequency Range:	80 MHz - 6000 MHz
Field Strength:	3 V/m
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Polarity of Antenna:	Horizontal and Vertical
Test Distance:	3 mE POOR POOR POOR
Antenna Height:	1.5 m
Dwell Time:	at least 3 seconds

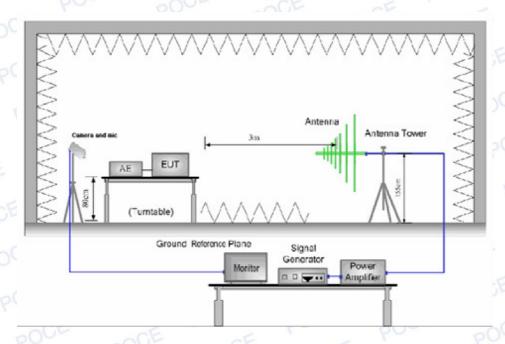
TEST PROCEDURE

The EUT are placed on a table which is 0.8 meter high above the ground. The EUT is set 3 meters away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the six sides of the EUT must be faced this transmitting antenna and measured individually.

In order to judge the EUT performance, a audio analyzer is used to monitor SINAD values. All the scanning conditions are as following:

Condition of Test

- CF
- 1. Fielded Strength
- 2. Radiated Signal
- 3. Scanning Frequency
- 4. Sweep time of radiated
- 2. Dwell Time


Remark

3V/m (Severity Level 2) Modulated 80-1000MHz 1400MHz~2700MHz 0.0015 Decade/s 1 Sec.

Report NO.: POCE210325025KRE-R1

Block diagram of test setup

V2.0

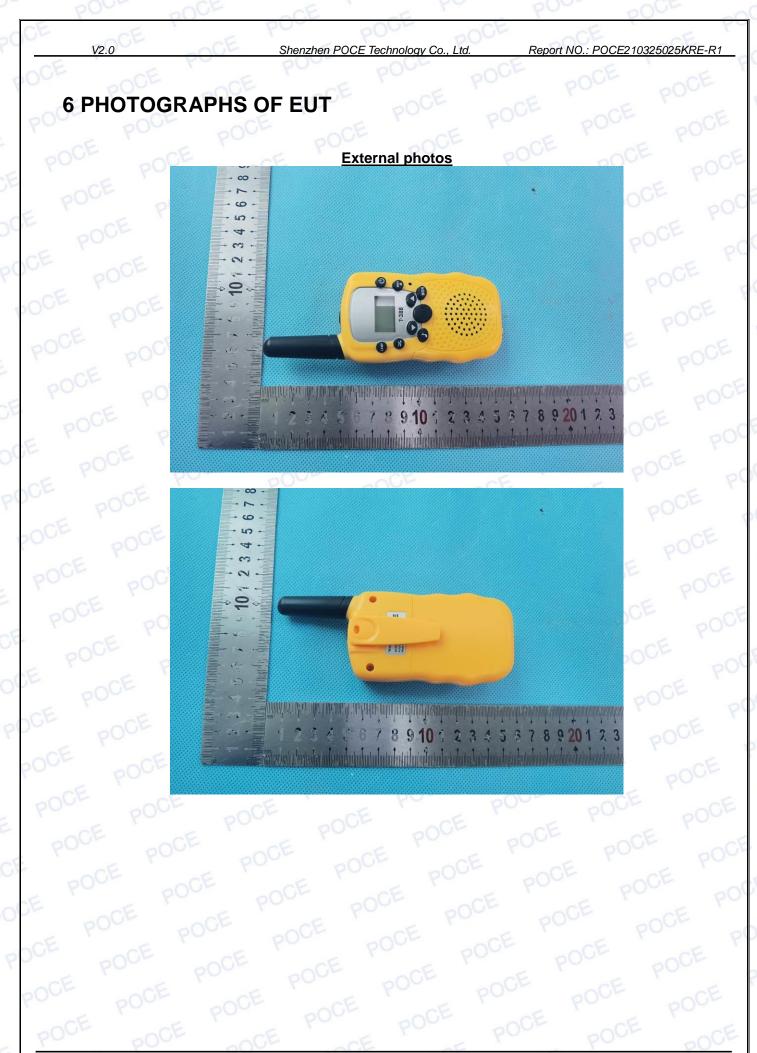
Note:

TABLE-TOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

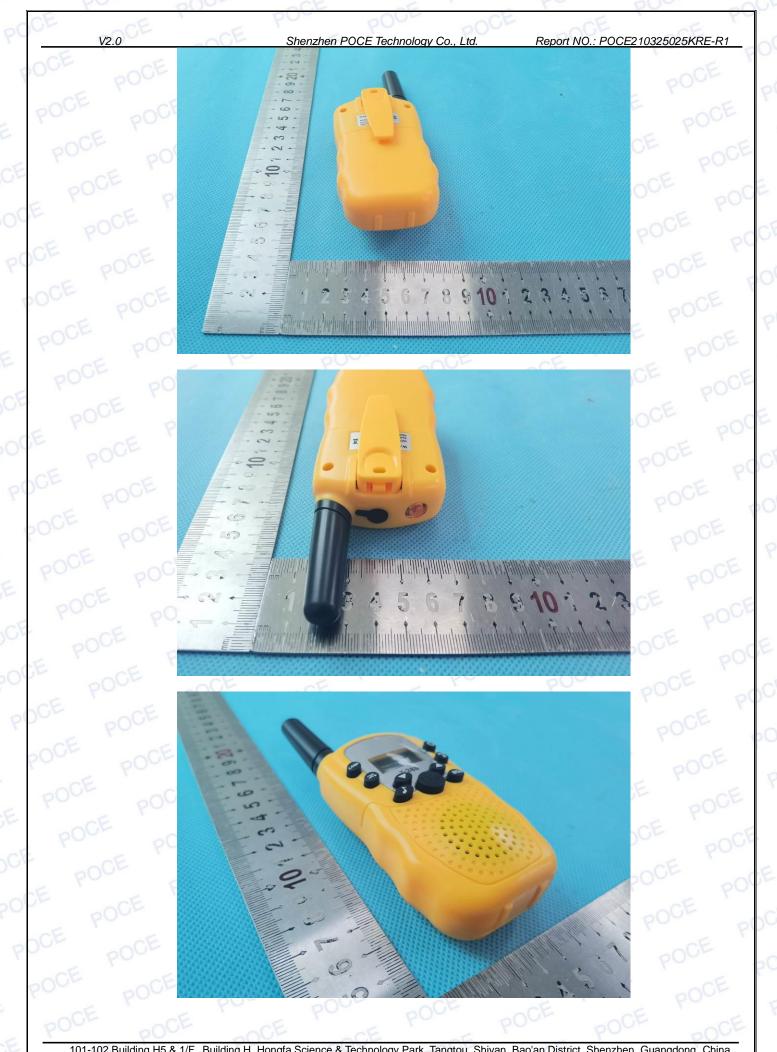
FLOOR-STANDING EQUIPMENT

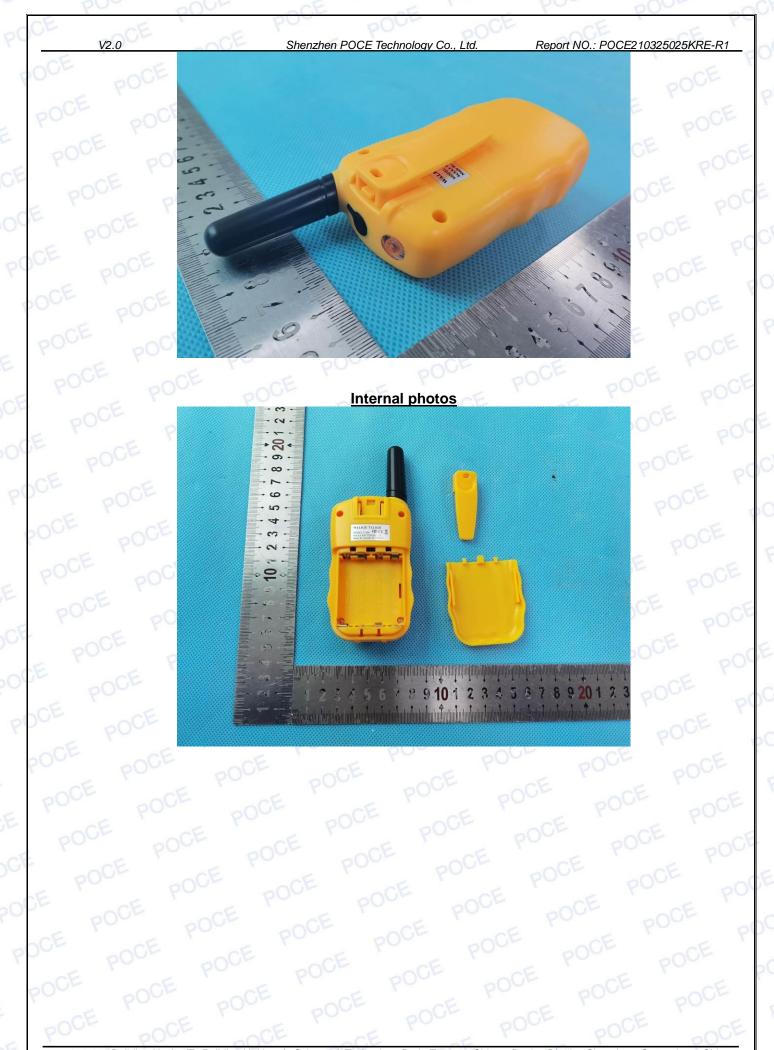

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.


TEST RESULTS

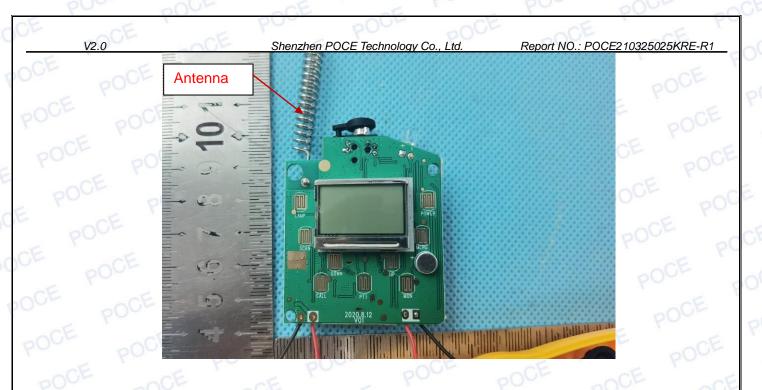
Please refer to the below test data:

Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Azimuth	Observations Performance	Perform. Criteria	Result
	DOCE	OCE	Тор	PUC	POUL	DOCE
	E	3 V/m (rms)	Front	POCE	OCE	1
80~6000	H/V	AM Modulated	Rear	A	A	PASS
000000000000000000000000000000000000000	CET / V	OF	Left	POUL	POCE	0
	PL PL	1000Hz, 80%	Right	CE	E	E PU
	POCE	DOCE	Bottom	CE PU	POL	P


Note1: The EUT can maintain communication link and not operate unintentionally during the test also can operate without any loss of user control functions after test.


 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755-29113252
 E-mail:service@poce-cert.com
 http://www.poce-cert.com
 Page 24 of 28



 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755-29113252
 E-mail:service@poce-cert.com
 http://www.poce-cert.com
 Page 25 of 28

 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755-29113252
 E-mail:service@poce-cert.com
 http://www.poce-cert.com
 Page 28 of 28