
ESP32 Pinout Reference: Which GPIO pins should
you use?

The ESP32 chip comes with 48 pins with multiple functions. Not all pins are
exposed in all ESP32 development boards, and there are some pins that cannot
be used.

There are many questions on how to use the ESP32 GPIOs. What pins should
you use? What pins should you avoid using in your projects? This post aims to be
a simple and easy to follow reference guide for the ESP32 GPIOs.

The figure below illustrates the ESP-WROOM-32 pinout. You can use it as a
reference if you’re using an ESP32 bare chip to build a custom board:

Note: not all GPIOs are accessible in all development boards, but each specific
GPIO works in the same way regardless of the development board you’re
using. If you’re just getting started with the ESP32, we recommend reading our
guide: Getting Started with the ESP32 Development Board.

https://i0.wp.com/randomnerdtutorials.com/wp-content/uploads/2018/08/esp32-pinout-chip-ESP-WROOM-32.png?quality=100&strip=all&ssl=1
https://randomnerdtutorials.com/getting-started-with-esp32/


The ESP32 peripherals include:

18 Analog-to-Digital Converter (ADC) channels
3 SPI interfaces
3 UART interfaces
2 I2C interfaces
16 PWM output channels
2 Digital-to-Analog Converters (DAC)
2 I2S interfaces
10 Capacitive sensing GPIOs

The ADC (analog to digital converter) and DAC (digital to analog converter)
features are assigned to specific static pins. However, you can decide which pins
are UART, I2C, SPI, PWM, etc – you just need to assign them in the code. This is
possible due to the ESP32 chip’s multiplexing feature.

Although you can define the pins properties on the software, there are pins
assigned by default as shown in the following figure (this is an example for the
ESP32 DEVKIT V1 DOIT board with 36 pins – the pin location can change
depending on the manufacturer).

ESP32 Peripherals

https://randomnerdtutorials.com/esp32-adc-analog-read-arduino-ide/
https://randomnerdtutorials.com/esp32-i2c-communication-arduino-ide/
https://randomnerdtutorials.com/esp32-pwm-arduino-ide/
https://randomnerdtutorials.com/esp32-touch-pins-arduino-ide/
https://makeradvisor.com/tools/esp32-dev-board-wi-fi-bluetooth/


Additionally, there are pins with specific features that make them suitable or not for
a specific project. The following table shows what pins are best to use as inputs,
outputs and which ones you need to be cautious.

The pins highlighted in green are OK to use. The ones highlighted in yellow are
OK to use, but you need to pay attention because they may have unexpected
behavior mainly at boot. The pins highlighted in red are not recommended to use
as inputs or outputs.

GPIO Input Output Notes

0 pulled up OK outputs PWM signal at boot

1 TX pin OK debug output at boot

2 OK OK connected to on-board LED

3 OK RX pin HIGH at boot

4 OK OK

5 OK OK outputs PWM signal at boot

https://i2.wp.com/randomnerdtutorials.com/wp-content/uploads/2018/08/ESP32-DOIT-DEVKIT-V1-Board-Pinout-36-GPIOs-updated.jpg?quality=100&strip=all&ssl=1


6 x x connected to the integrated SPI flash

7 x x connected to the integrated SPI flash

8 x x connected to the integrated SPI flash

9 x x connected to the integrated SPI flash

10 x x connected to the integrated SPI flash

11 x x connected to the integrated SPI flash

12 OK OK boot fail if pulled high

13 OK OK

14 OK OK outputs PWM signal at boot

15 OK OK outputs PWM signal at boot

16 OK OK

17 OK OK

18 OK OK

19 OK OK

21 OK OK

22 OK OK

23 OK OK

25 OK OK

26 OK OK

27 OK OK

32 OK OK

33 OK OK

34 OK input only



35 OK input only

36 OK input only

39 OK input only

Continue reading for a more detail and in-depth analysis of the ESP32 GPIOs and
its functions.

Input only pins
GPIOs 34 to 39 are GPIs – input only pins. These pins don’t have internal pull-ups
or pull-down resistors. They can’t be used as outputs, so use these pins only as
inputs:

GPIO 34
GPIO 35
GPIO 36
GPIO 39

SPI flash integrated on the ESP-WROOM-32
GPIO 6 to GPIO 11 are exposed in some ESP32 development boards. However,
these pins are connected to the integrated SPI flash on the ESP-WROOM-32 chip
and are not recommended for other uses. So, don’t use these pins in your
projects:

GPIO 6 (SCK/CLK)
GPIO 7 (SDO/SD0)
GPIO 8 (SDI/SD1)
GPIO 9 (SHD/SD2)
GPIO 10 (SWP/SD3)
GPIO 11 (CSC/CMD)

Capacitive touch GPIOs
The ESP32 has 10 internal capacitive touch sensors. These can sense variations
in anything that holds an electrical charge, like the human skin. So they can detect
variations induced when touching the GPIOs with a finger. These pins can be



easily integrated into capacitive pads, and replace mechanical buttons. The
capacitive touch pins can also be used to wake up the ESP32 from deep sleep.

Those internal touch sensors are connected to these GPIOs:

T0 (GPIO 4)
T1 (GPIO 0)
T2 (GPIO 2)
T3 (GPIO 15)
T4 (GPIO 13)
T5 (GPIO 12)
T6 (GPIO 14)
T7 (GPIO 27)
T8 (GPIO 33)
T9 (GPIO 32)

Learn how to use the touch pins with Arduino IDE: ESP32 Touch Pins with
Arduino IDE

Analog to Digital Converter (ADC)
The ESP32 has 18 x 12 bits ADC input channels (while the ESP8266 only has 1x
10 bits ADC). These are the GPIOs that can be used as ADC and respective
channels:

ADC1_CH0 (GPIO 36)
ADC1_CH1 (GPIO 37)
ADC1_CH2 (GPIO 38)
ADC1_CH3 (GPIO 39)
ADC1_CH4 (GPIO 32)
ADC1_CH5 (GPIO 33)
ADC1_CH6 (GPIO 34)
ADC1_CH7 (GPIO 35)
ADC2_CH0 (GPIO 4)
ADC2_CH1 (GPIO 0)
ADC2_CH2 (GPIO 2)
ADC2_CH3 (GPIO 15)
ADC2_CH4 (GPIO 13)
ADC2_CH5 (GPIO 12)

https://randomnerdtutorials.com/esp32-touch-wake-up-deep-sleep/
https://randomnerdtutorials.com/esp32-touch-pins-arduino-ide/


ADC2_CH6 (GPIO 14)
ADC2_CH7 (GPIO 27)
ADC2_CH8 (GPIO 25)
ADC2_CH9 (GPIO 26)

Learn how to use the ESP32 ADC pins:

ESP32 ADC Pins with Arduino IDE
ESP32 ADC Pins with MicroPython

Note: ADC2 pins cannot be used when Wi-Fi is used. So, if you’re using Wi-Fi
and you’re having trouble getting the value from an ADC2 GPIO, you may
consider using an ADC1 GPIO instead, that should solve your problem.

The ADC input channels have a 12 bit resolution. This means that you can get
analog readings ranging from 0 to 4095, in which 0 corresponds to 0V and 4095 to
3.3V. You also have the ability to set the resolution of your channels on the code,
as well as the ADC range.

The ESP32 ADC pins don’t have a linear behavior. You’ll probably won’t be able to
distinguish between 0 and 0.1V, or between 3.2 and 3.3V. You need to keep that in
mind when using the ADC pins. You’ll get a behavior similar to the one shown in
the following figure.

https://randomnerdtutorials.com/esp32-adc-analog-read-arduino-ide/
https://randomnerdtutorials.com/esp32-esp8266-analog-readings-micropython/


 
View source

Digital to Analog Converter (DAC)
There are 2 x 8 bits DAC channels on the ESP32 to convert digital signals into
analog voltage signal outputs. These are the DAC channels:

DAC1 (GPIO25)
DAC2 (GPIO26)

RTC GPIOs
There is RTC GPIO support on the ESP32. The GPIOs routed to the RTC low-
power subsystem can be used when the ESP32 is in deep sleep. These RTC
GPIOs can be used to wake up the ESP32 from deep sleep when the Ultra Low
Power (ULP) co-processor is running. The following GPIOs can be used as an
external wake up source.

RTC_GPIO0 (GPIO36)
RTC_GPIO3 (GPIO39)
RTC_GPIO4 (GPIO34)
RTC_GPIO5 (GPIO35)
RTC_GPIO6 (GPIO25)

https://github.com/espressif/arduino-esp32/issues/92
https://randomnerdtutorials.com/esp32-external-wake-up-deep-sleep/


RTC_GPIO7 (GPIO26)
RTC_GPIO8 (GPIO33)
RTC_GPIO9 (GPIO32)
RTC_GPIO10 (GPIO4)
RTC_GPIO11 (GPIO0)
RTC_GPIO12 (GPIO2)
RTC_GPIO13 (GPIO15)
RTC_GPIO14 (GPIO13)
RTC_GPIO15 (GPIO12)
RTC_GPIO16 (GPIO14)
RTC_GPIO17 (GPIO27)

Learn how to use the RTC GPIOs to wake up the ESP32 from deep sleep:
ESP32 Deep Sleep with Arduino IDE and Wake Up Sources

PWM
The ESP32 LED PWM controller has 16 independent channels that can be
configured to generate PWM signals with different properties. All pins that can act
as outputs can be used as PWM pins (GPIOs 34 to 39 can’t generate PWM).

To set a PWM signal, you need to define these parameters in the code:

Signal’s frequency;
Duty cycle;
PWM channel;
GPIO where you want to output the signal.

Learn how to use ESP32 PWM with Arduino IDE: ESP32 PWM with Arduino
IDE

I2C
The ESP32 has two I2C channels and any pin can be set as SDA or SCL. When
using the ESP32 with the Arduino IDE, the default I2C pins are:

GPIO 21 (SDA)
GPIO 22 (SCL)

https://randomnerdtutorials.com/esp32-deep-sleep-arduino-ide-wake-up-sources/
https://randomnerdtutorials.com/esp32-pwm-arduino-ide/


If you want to use other pins, when using the wire library, you just need to call:

Wire.begin(SDA, SCL);

Learn more about I2C communication protocol with the ESP32 using
Arduino IDE: ESP32 I2C Communication (Set Pins, Multiple Bus Interfaces and
Peripherals)

SPI
By default, the pin mapping for SPI is:

SPI MOSI MISO CLK CS

VSPI GPIO 23 GPIO 19 GPIO 18 GPIO 5

HSPI GPIO 13 GPIO 12 GPIO 14 GPIO 15

Interrupts
All GPIOs can be configured as interrupts.

Learn how to use interrupts with the ESP32:

ESP32 interrupts with Arduino IDE
ESP32 interrupts with MicroPython

Strapping Pins
The ESP32 chip has the following strapping pins:

GPIO 0
GPIO 2
GPIO 4
GPIO 5 (must be HIGH during boot)
GPIO 12 (must be LOW during boot)
GPIO 15 (must be HIGH during boot)

https://randomnerdtutorials.com/esp32-i2c-communication-arduino-ide/
https://randomnerdtutorials.com/esp32-pir-motion-sensor-interrupts-timers/
https://randomnerdtutorials.com/micropython-interrupts-esp32-esp8266/


These are used to put the ESP32 into bootloader or flashing mode. On most
development boards with built-in USB/Serial, you don’t need to worry about the
state of these pins. The board puts the pins in the right state for flashing or boot
mode. More information on the ESP32 Boot Mode Selection can be found here.

However, if you have peripherals connected to those pins, you may have trouble
trying to upload new code, flashing the ESP32 with new firmware or resetting the
board. If you have some peripherals connected to the strapping pins and you are
getting trouble uploading code or flashing the ESP32, it may be because those
peripherals are preventing the ESP32 to enter the right mode. Read the Boot
Mode Selection documentation to guide you in the right direction. After resetting,
flashing, or booting, those pins work as expected.

Pins HIGH at Boot
Some GPIOs change its state to HIGH or output PWM signals at boot or reset.
This means that if you have outputs connected to these GPIOs you may get
unexpected results when the ESP32 resets or boots.

GPIO 1
GPIO 3
GPIO 5
GPIO 6 to GPIO 11 (connected to the ESP32 integrated SPI flash memory
– not recommended to use).
GPIO 14
GPIO 15

Enable (EN)
Enable (EN) is the 3.3V regulator’s enable pin. It’s pulled up, so connect to ground
to disable the 3.3V regulator. This means that you can use this pin connected to a
pushbutton to restart your ESP32, for example.

GPIO current drawn
The absolute maximum current drawn per GPIO is 40mA according to the
“Recommended Operating Conditions” section in the ESP32 datasheet.

ESP32 Built-In Hall Effect Sensor

https://github.com/espressif/esptool/wiki/ESP32-Boot-Mode-Selection
https://github.com/espressif/esptool/wiki/ESP32-Boot-Mode-Selection


The ESP32 also features a built-in hall effect sensor that detects changes in the
magnetic field in its surroundings.

We hope you’ve found this reference guide for the ESP32 GPIOs useful. If you
have more tips about the ESP32 GPIOs, please share by writing a comment down
below.

If you’re just getting started with the ESP32, we have some great content to get
started:

Learn ESP32 with Arduino IDE
Getting Started with the ESP32 Development Board
20+ ESP32 Projects and Tutorials
ESP32 Web Server Tutorial
ESP32 vs ESP8266 – Pros and Cons

Thanks for reading.

Wrapping Up

https://randomnerdtutorials.com/esp32-hall-effect-sensor/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/getting-started-with-esp32/
https://randomnerdtutorials.com/projects-esp32/
https://randomnerdtutorials.com/esp32-web-server-arduino-ide/
https://makeradvisor.com/esp32-vs-esp8266/

