

Shenzhen CTL Testing Technology Co., Ltd. Tel: +86-755-89486194 E-Mail: ctl@ctl-lab.com

TEST REPORT

EN 55014-1 / EN 55014-2

Electromagnetic compatibility – Requirements for household appliances, electric tools and similar apparatus.

Part 1: Emission /	Part 2: Immunity – Product family standard
Report Reference No	CTL2007312128-E
Compiled by	
(position+printed name+signature):	File administrators Darben Pan
Supervised by	0
(position+printed name+signature):	Technique principal Ivan Xie (
Approved by	1000 (8)
(position+printed name+signature);	Manager Tracy Qi
Date of issue	Sep. 23, 2020
Testing Laboratory Name	Shenzhen CTL Testing Technology Co., Ltd
Address	Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, China 518055
Web	www.ctl-lab.com
Testing location/ procedure	Full application of Harmonised standards Partial application of Harmonised standards Other standard testing methods
Applicant's name	TonKey Electrical Technology Co.Ltd
Address	12 building, nanling road, Shajing town, Baoan district, SZ city, GD, PRC
Test specification:	
Standard	EN 55014-1: 2017 EN 55014-2: 2015
	EN 61000-3-2: 2019 EN 61000-3-3: 2013+A1: 2019
Non-standard test method	1
TRF Originator	Shenzhen CTL Testing Technology Co., Ltd
Shenzhen CTL Testing Technology	Co., Ltd

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description:	Heating pad
Trade Mark	N/A
	AC 230V~240V
Result	Pass

EMC -- TEST REPORT

Test Report No. :	CTL2007312128-E	Sep. 23, 2020
	01L2007312120-L	Date of issue

Equipment under Test : Heating pad

Model No. : SN-L

Listed Models : TK-HP3016, TK-HP2412, TK-HP1616, TK-HP1612, HB-L,

FT-1616, FT-3016, FT-01A, SN-S

Applicant : TonKey Electrical Technology Co.Ltd

Address : 12 building, nanling road, Shajing town, Baoan district, SZ city,

GD, PRC

Manufacturer : OnKey Electronic Technology Co.Ltd

Address : 4-5 Floor, A2 Building, No.639 FuSheng road, DaLang Town.,

DongGuan, GD. PRC

Test Result	Pass
-------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

V1.0 Page 3 of 40 Report No.: CTL2007312128-E

History of this test report

Report No.	Version Description		Issued Date	
CTL2007312128-E	V1.0	Initial Issued Report	Sep. 23, 2020	

Contents

1. TEST STANDARDS	5
2. SUMMARY	6
2.1. General Remarks	
2.2. Equipment Under Test	
2.3. Description of test modes	6
2.4. Short description of the Equipment under Test (EUT)	6
2.5. Description of Support units	
2.6. Performance level	7
3. TEST ENVIRONMENT	8
J. PEGI ENVINORMENT	······································
3.1. Address of the test laboratory	8
3.2. Test Facility	
3.3. Test Description	
3.4. Statement of the measurement uncertainty	
3.5. Equipments Used during the Test	
4. TEST CONDITIONS AND RESULTS	12
TEOT CONDITIONS AND RECOEF C	I <u> </u>
4.1. Conducted disturbance	12
4.2. Disturbance power	
4.3. Harmonic current	
4.4. Voltage fluctuations and flicker	
4.5. Electrostatic discharge	
4.6. Electrical fast transients / Burst	2/
4.7. Surge	
4.8. Conducted disturbances induced by radio-frequency fields	
4.9. Voltage dips and short interruptions	
4.3. Voltage uips and short interruptions	3U
5. TEST SETUP PHOTOS	3 1
6. PHOTOS OF THE EUT	3 3

V1.0 Page 5 of 40 Report No.: CTL2007312128-E

1. TEST STANDARDS

The tests were performed according to following standards:

<u>EN 55014-1: 2017</u> Electromagnetic compatibility - Requirements for household appliances, electric tools and similar apparatus -- Part 1: Emission

<u>EN 55014-2: 2015</u> Electromagnetic compatibility - Requirements for household appliances, electric tools and similar apparatus -- Part 2: Immunity - Product family standard

<u>EN 61000-3-2: 2019</u> Electromagnetic compatibility (EMC) -- Part 3-2: Limits - Limits for harmonic current emissions (equipment input current up to and including 16 A per phase)

EN 61000-3-3: 2013+A1: 2019 Electromagnetic compatibility (EMC) -- Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection

V1.0 Page 6 of 40 Report No.: CTL2007312128-E

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample : Aug. 26, 2020

Sampling and Testing commenced on : Aug. 26, 2020

Testing concluded on : Sep. 23, 2020

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage : ■ 230V / 50 Hz o 115V / 60Hz o 12 V DC o 24 V DC

Other (specified in blank below)

.

2.3. Description of test modes

RADIATED EMISSION TEST:

Description of Test Mode	Test Voltage
WORKING	AC 230V/50Hz

IMMUNITY TESTS:

Description of Test Mode	Test Voltage
WORKING	AC 230V/50Hz

Emissions tests...... According to EN 55014-1, searching for the highest disturbance.

Immunity tests According to EN 55014-2, searching for the highest susceptivity.

Harmonic current.....: According to EN 61000-3-2, searching for the highest disturbance.

Voltage fluctuation.....: According to EN 61000-3-3, searching for the highest disturbance.

Note:

For the test results, the EUT had been tested with all conditions. But only the worst case was showed in test report.

The tests are carried out with surge protective devices disconnected

2.4. Short description of the Equipment under Test (EUT)

The EUT is a Heating pad

2.5. Description of Support units

The EUT has been tested as a dependent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

- supplied by the manufacturer
- o supplied by the lab

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.
			Now	

2.6. Performance level

Definition related to the performance level:

- based on the used product standard
- o based on the declaration of the manufacturer, requestor or purchaser

Criterion A:

Definition: normal performance within limits specified by the manufacturer, requestor or purchaser:

The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Criterion B:

Definition: temporary loss of function or degradation of performance which ceases after the disturbance ceases, and from which the equipment under test recovers its normal performance, without operator intervention:

The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Criterion C:

Definition: temporary loss of function or degradation of performance, the correction of which requires operator intervention:

Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

V1.0 Page 8 of 40 Report No.: CTL2007312128-E

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd. Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Certificated by CNAS Registration No.:CNAS L7497 Date of issue:Oct. 24, 2019 Valid until:Feb. 14, 2024

Certificated by A2LA, USA Registration No.:4343.01

Date of registration: December 27, 2017

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 399832

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

3.3. Test Description

Emission Measurement	11 11 11	
Conducted Disturbance	EN 55014-1: 2017	PASS
Power Clamp Radiation	EN 55014-1: 2017	PASS
Harmonic Current	EN 61000-3-2: 2019	PASS
Voltage Fluctuation and Flicker	EN 61000-3-3: 2013+A1: 2019	PASS
Immunity Measurement		- 1
Electrostatic Discharge	EN 55014-2: 2015 EN 61000-4-2:2009	PASS
Electrical Fast Transient/Burst Test	EN 55014-2: 2015 EN 61000-4-4:2012	PASS
Surge Test	EN 55014-2: 2015 EN 61000-4-5: 2014+A1: 2017	PASS
Conducted Susceptibility Test	EN 55014-2: 2015 EN 61000-4-6:2014	PASS
Voltage Dips and Interruptions Test	EN 55014-2: 2015 EN 61000-4-11: 2014+A1: 2017	PASS

Remark:

1. The test result PASS and /or FAIL has no relationship with the measurement uncertainty.

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission(chamber 1)	30~1000MHz	±3.20dB	(1)
Radiated Emission(chamber 2)	30~1000MHz	±3.53dB	(1)
Radiated Emission	Above 1GHz	±4.32dB	(1)
Conducted Emission	0.15~30MHz	±2.66dB	(1)
Disturbance Power	30~300MHz	±2.90dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 10 of 40 Report No.: CTL2007312128-E

3.5. Equipments Used during the Test

Cond	ucted Emission		1/2			
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	1166.5950.03	2020/05/18	2021/05/17
2	LISN	ROHDE & SCHWARZ	ESH2-Z5	860014/010	2020/05/15	2021/05/14
3	Limitator	HP	11947A	N/A	2020/05/15	2021/05/14
Softw	are:	a 11 -			00	1
Name of Software:			Version:			
	ES-K1			V1.71		

Harm	Harmonic Current/ Voltage Fluctuation and Flicker								
Item Test Equipment Manufacturer Model No. Serial No. Last Cal. Cal					Cal.Due				
1	Harmonic And Flicker Analyzer	Voltech	PM6000	N/A	2020/05/15	2021/05/14			
Softw	are:		7.0	M B					
	Name of		THE STATE OF	Version:					
	IEC61000-	100	Rele	ease 1.24.12					

Electrostatic Discharge							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due	
1	ESD Simulator	TESEQ AG	NSG 437	1058	2019/09/24	2020/09/23	

Electr	Electrical Fast Transient/Surge/Dips									
Item	Test Equipment	Manufacturer	No.	Serial No.	Last Cal.	Cal.Due				
1	Ultra Compact Simulator	HAEFELY	ECOMP	ACT4	174887	2019/09/23	2020/09/22			
Softw	are:									
	Name of				Version:					
	EMV Check 2000 V1.27b									

Conducted Susceptibility (CS):									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due			
1	Conducted Disturbances test system	SCHLODER	CDG 6000	N/A	2020/05/15	2021/05/14			
2	Amplifier	SCHLODER	4N100W-6DB	N/A	2020/05/15	2021/05/14			
3	CDN	SCHLODER	CDN M2+M3	A2210225/2 013	2020/05/15	2021/05/14			
Softw	are:	8 No.				of the			

Software.	
Name of Software:	Version:
IEC/EN61000-4-6 Application software 10KHz Version	1.2.0(25.03.2013)

Distur	Disturbance Power								
Item	tem Test Equipment Manufacturer Mod			Ю.	Serial No.	Last Cal.	Cal.Due		
1	EMI Test Receiver	ROHDE & SCHWARZ	ESC	P	1166.5950.03	2020/05/18	2021/05/17		
2	Absorbing Clamp	orbing Clamp Luthi MDS		21	4035	2020/05/29	2021/05/28		
Softw	are:								
	Name of Software:					Version:			
	ES-ł				V1.71	10			

Remark:

1. The test result PASS and /or FAIL has no relationship with the measurement uncertainty.

V1.0 Page 12 of 40 Report No.: CTL2007312128-E

4. TEST CONDITIONS AND RESULTS

4.1. Conducted disturbance

For test instruments and accessories used see section 3.5.

4.1.1. Description of the test location

Test location: Conduction Lab

4.1.2. Limits of disturbance

General limits

			Contorui ininito					
Frequency	Mains	ports	Associated ports					
range	Disturbance voltage		Disturban	ce voltage	Disturban	Disturbance current		
MHz	Quasi-peak	Average	Quasi-peak	Average	Quasi-peak	Average		
IVI□Z	dBμV	dBμV	dBμV	dBμV	dBμV	dBμV		
	Decreasing linearly with the				Decreasing linearly with the			
0.15 to 0.50	logarithm of the frequency from:		80	70	logarithm of the frequency from:			
	66 to 56	59 to 46			40 to 30	30 to 20		
0.50 to 5	56	46	74	64	30	20		
5to 30	60	50	74	64	30	20		
The lower limit a	applies at the trans	ition frequencies.		77.1				

Limits for mains port of tools

P ≤ 7	00 W	700W <p< th=""><th>≤ 1000 W</th><th colspan="3">P> 1000 W</th></p<>	≤ 1000 W	P> 1000 W		
Quasi-peak	Average	Quasi-peak	Average	Quasi-peak	Average	
dBμV	dBμV	dBμV	dBμV	dBμV	dBμV	
Decreasing linearly with the logarithm of the frequency from:						
66 to 59	59 to 49	70 to 63	63 to 53	76 to 69	69 to 59	
59	49	63	53	69	59	
64	54	68	58 74		64	
	Quasi-peak dBμV 66 to 59 59	dBμV dBμV Decreasing 66 to 59 59 to 49 59 49	Quasi-peak dBμV Average dBμV Quasi-peak dBμV Decreasing linearly with the logent between the companient of the compa	Quasi-peak dBμV Average dBμV Quasi-peak dBμV Average dBμV Decreasing linearly with the logarithm of the free 66 to 59 59 to 49 70 to 63 63 to 53 59 49 63 53	Quasi-peak dBμVAverage dBμVQuasi-peak dBμVAverage dBμVQuasi-peak dBμVDecreasing linearly with the logarithm of the frequency from:66 to 5959 to 4970 to 6363 to 5376 to 695949635369	

The lower limit applies at the transition frequencies. **Key**

P = rated power of the motor only.

Note: (1) The tighter limit shall apply at the edge between two frequency bands.

4.1.3. Description of the test set-up

According to clause 5.2.2.2 in EN 55014-1: 2017 "the general principle to be followed in the application of the artificial hand is that the metal foil shall be wrapped around all handles" and "when the casing of the appliance is of insulating material, metal foil shall be wrapped round the handles", application of the artificial hand is used.

4.1.3.1. Operating Condition

The EUT shall operate in the mode of operation described in Section 2.3, and the maximum emanating results are recorded.

4.1.4. Test result

Frequency range	0.15-30MHz	Environmental	Temperature	25°C
Detector function& Resolution bandwidth	Quasi-Peak,Average 9kHz	conditions	Humidity	55.0%RH

The requirements are Fulfilled

Remarks: The limits are kept. For detailed results, please see the following page(s).

Shenzhen CTL Testing Technology Co., Ltd.

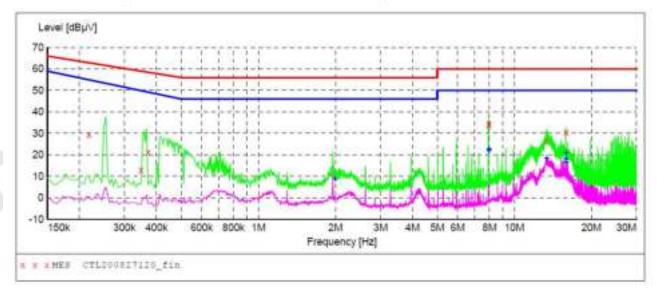
Voltage Mains Test EN 55014-1

DUT: SN-L

Manufacturer: OnKey Electronic Technology Co.Ltd

Operating Condition: WORKING

Test Site: / Operator: ZGH


Test Specification: AC 230V/50Hz

Comment:

Start of Test: 2020-8-27 / 10:47:14

SCAN TABLE: "Voltage (9K-30M) FIN"

Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL200827120 fin"

2020-8-27	10+50						
Frequency MH	y Level	Transd dB	Limit dBµV		Detector	Line	PE
0.21750 0.34800 0.37050 7.94850 7.95750 13.35750 15.92250	0 12.90 0 21.10 0 33.80 0 34.60 0 26.10	11.2 11.2 11.0 11.0 10.9 11.0	63 59 60 60 60	33.5 46.1 37.4 26.2 25.4 33.9 29.4	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND GND

MEASUREMENT RESULT: "CTL200827120 fin2"

2020-8-27 10:	50						
Frequency MHz	Level dBpV	Transd dB	Limit dBpV	Margin dB	Detector	Line	PE
1.995000	8.80	11.2	46	37.2	AV	1.1	GND
7.953000	21.90	11.0			AV	1.1	GND
7.957500	22.90	11.0	50	27.1	AV	L1	GND
13,362000	18.30	10.9	50	31.7	AV	LI	GND
15.895500	16.50	11.0	50	33.5	AV	LI	GND
15.900000	18.10	11.0	50	31.9	AV	L1	GND
15.927000	21.00	11.0	5.0	29.0	AV	1.1	GND

V1.0 Page 14 of 40 Report No.: CTL2007312128-E

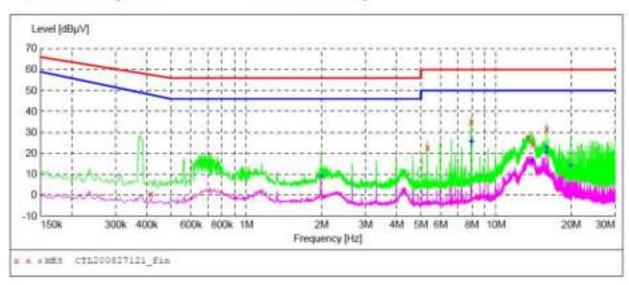
Shenzhen CTL Testing Technology Co., Ltd.

Voltage Mains Test EN 55014-1

Manufacturer: OnKey Electronic Technology Co.Ltd

Operating Condition: WORKING

Test Site:


Operator: SGH.

Test Specification: AC 230V/50Hz

Comment:

2020-8-27 / 10:54:22 Start of Test:

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M 150K-30M Voltage

MEASUREMENT RESULT: "CTL200827121 fin"

2020-8-27 10:	56						
Frequency MHz	Level dBµV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.415500	0.50	11.2	58	57.0	QP	N	GND
5.307000	22.80	11.2	60	37.2	QP	24	GND
7,962000	35.10	11.0	60	24.9	QP	31	GND
13.497000	27.70	10.9	60	32.3	QP	N	GND
13.983000	24.30	10.9	60	35.7	QP	31	GND
15.927000	31.80	11.0	60	28.2	QP .	24	GND

MEASUREMENT RESULT: "CTL200827121 fin2"

2020-8-27 10	:56						
Frequency MHz	Level dBpV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
1.995000	9.10	11.2	46	36.9	AV	N	GND
7.962000	25.30	11.0	50	24.7	AV	24	GND
7.966500	25,80	11.0	5.0	24.2	AV	N	GND
13,902000	16.50	10.9	5.0	33.5	AV	24	GND
15,927000	20.50	11.0	50	29.5	AV	N	GND
15.931500	22.80	11.0	50	27.2	AV	N	GND
19.919500	14.10	11.2	50	35.9	AV	24	GND

V1.0 Page 15 of 40 Report No.: CTL2007312128-E

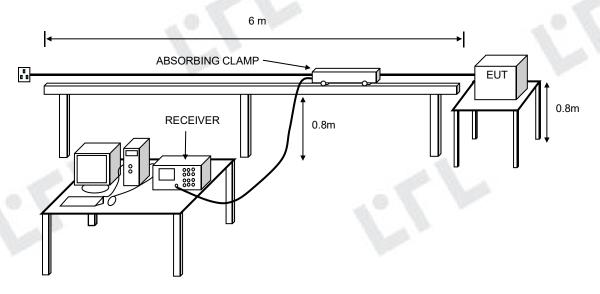
4.2. Disturbance power

For test instruments and accessories used see section 3.5.

4.2.1. Description of the test location

Test location: Conduction Lab

4.2.2. Limits of disturbance


Frequency	equency		Tools						
range	Gene	rai	P ≤ 70	0 W	700 W < P ≤	1 000 W	P > 1 00	00 W	
MHz	Quasi-peak dBpW	Average dBpW	Quasi-peak dBpW	Average dBpW	Quasi-peak dBpW	Average dBpW	Quasi-peak dBpW	Average dBpW	
20 to 200		The same	Increasing	linearly wit	h the frequen	cy from:	That "		
30 to 300	45 to 55	35 to 45	45 to 55	35 to 45	49 to 59	39 to 49	55 to 65	45 to 55	
Key	wer of the mo	otor only							

The EUT shall be also deemed to comply with the requirement of this standard in the frequency range from 300 MHz to 1 000 MHz without further testing if both conditions 1) and 2) below are fulfilled:

- 1) the disturbance power emission from the EUT is lower than the limits of the above table reduced by the values of the follow Table;
- 2) the maximum clock frequency is less than 30 MHz

Frequency		_	Tools						
range	Gene	ral	P ≤ 70	0 W	700 W < P ≤	1 000 W	P > 1 00	00 W	
MHz	Quasi-peak dBpW	Average dBpW	Quasi-peak dBpW	Average dBpW	Quasi-peak dBpW	Average dBpW	Quasi-peak dBpW	Average dBpW	
200 to 300			Increasing	linearly wit	h the frequen	cy from:			
200 10 300	0 to 10	0							

4.2.3. Description of the test set-up

4.2.4. Test result

Frequency range	30-300MHz	Environmental	Temperature	25℃
Detector function& Resolution bandwidth	Quasi-Peak 120kHz	conditions	Humidity	55.0%RH

The requirements are Fulfilled

Remarks: The limits are kept. For detailed results, please see the following page(s)

Shenzhen CTL Testing Technology Co., Ltd

Power Clamp Test EN 55014-1

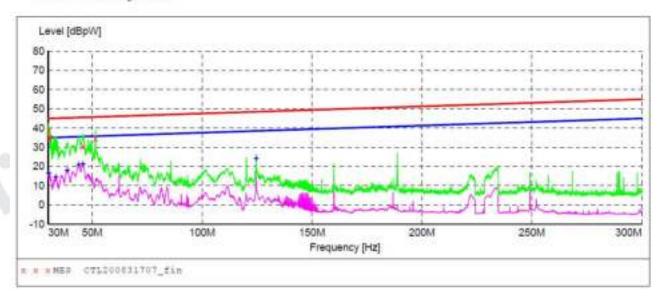
EUT: SN-L

Manufacturer: OnKey Electronic Technology Co.Ltd

Operating Condition: WORKING

Test Site: /

Operator: ZGH


Test Specification: AC 230V/50Hz

Comment:

Start of Test: 2020-8-31 / 11:44:33

SCAN TABLE: "POWER (30M-300M) FIN"

Short Description:

MEASUREMENT RESULT: "CTL200831707_fin"

2020-8-31 11:	46					
Frequency MHz	Level dBpW	Transd dB	Limit dBpW	Margin dB	Det.	Position cm
30.180000	38.80	0.8	45	6.2	QP	0.0
30,480000	35.00	0.8	45	10.0	QP	0.0
30.780000	34.90	0.8	45	10.1	QP	0.0
45.900000	30.20	3.9	46	15.4	QP	0.0
51.480000	34.60	3.8	46	11.2	QP	0.0

MEASUREMENT RESULT: "CTL200831707 fin2"

					46	2020-8-31 11:
Position cm	Det.	Margin dB	Limit dBpW	Transd dB	Level dBpW	Frequency MHz
0.0 0.0 0.0 0.0	AV AV AV AV	20.6 17.2	35 35 35 36 36	0.8 1.0 3.1 3.8 3.9	16.80 14.50 18.10 20.90 21.40	30.180000 33.480000 38.640000 43.800000 45.780000
0.0	AV	1000	39	-1.9	24,20	124.560000

V1.0 Page 17 of 40 Report No.: CTL2007312128-E

4.3. Harmonic current

. For test instruments and accessories used see section 3.5.

4.3.1. Description of the test location

Test location: Harmonic & Flicker Test Room

4.3.2. Limits of harmonic current

Test configuration and procedure see clause 7.1 of standard EN 61000-3-2:2019

4.3.3. Description of the test set-up

The EUT shall operate in the mode of operation described in Section 2.3, and the maximum emanating results are recorded.

4.3.4. Test result

The requirements are Fulfilled

Remarks: The limits are kept. For detailed results, please see the following page(s).

 Product:
 SN-L
 2020 Aug 28 13:51

 Serial no:
 Page 1 of 1

Test Date: 2020 Aug 28 13:47 Result Name:

Type of Test: EN61000:2006 Harmonics inc. interharmonics to EN61000-4-7:2002

Limits: Class A

Power Analyzer: Voltech PM6000 SN: 200006700717 Firmware version: v1.22.07RC6

Channel(s): 1. SN: 090015502540, 26. Adjusted Date: 20 JUN 2013. 2. SN:None. Adjusted Date:None.

3 SN None Adjusted Date None 4 SN None Adjusted Date None

5 SN:None Adjusted Date None 6 SN:None Adjusted Date None

1. SN: 091024303148, 4. Adjusted Date: 20 JUN 2013. 2. SN:None. Adjusted Date: None.

SN None Adjusted Date None 4 SN None Adjusted Date None
 SN None Adjusted Date None 0 SN None Adjusted Date None

AC Source: Mains / Manual Source

Harmonic Results
Against Chosen Limits:

Notes:

PASS

Test Parameter Details	User Entered	Measured
Operating Frequency;	50	49.9840
Operating Voltage:	230	230,6568
Specified Power:	0.0000	107,7966
Fundamental Current:	0.1600	0.4833
Power Factor:	0.5860	0.9232
Average Input Current:		0.3789
Maximum POHC:		0.0091
POHC Limit:		0.2514
Maximum THC:		0.0808
Minimum Power:	75	
Class Multiplier;	1.0000	
Test Duration:	00:02:30	

Report No.: CTL2007312128-E

CTL

Product:

SN-L

2020 Aug 28 13:51

Page 1 of 1

Serial no: Description: Result Name:

Voltech IEC61000-3 Windows Software 1.24.12

Test Date:

2020 Aug 28 13:47

Type of Test

Fluctuating Harmonics Test - Worst Case Table (2006)

Power Analyzer:

Voltech PM6000 SN: 200006700717 Firmware version: v1.22.07RC6

Channel(s)

1. SN: 090015502540, 28. Adjusted Date: 20 JUN 2013. 2. SN:None - Adjusted Date:None

3 SN None Adjusted Date None 4 SN None Adjusted Date None 5 SN None Adjusted Date None 6 SN None Adjusted Date None

Shunt(s)

1. SN: 091024303148, 4. Adjusted Date: 20 JUN 2013. 2. SN:None: Adjusted Date: None

SN None Adjusted Date None 4 SN None Adjusted Date None
 SN None Adjusted Date None 6 SN None Adjusted Date None

AC Source:

Mains / Manual Source

Overall Result:

PASS

Class	Class A	
Class Multiplier	1	

Hanv.	LWST 1	Lint2	Average Reading	4.1 -12	Max Reading	<1.2	FAIL.	Hami	Lint 1	LIMEZ	Average Reading	41.42	Max Reading	-12	FAIL
ż	1.0800A	1.6200A	51.34mA	V V	64.95mA	1	Pine	. 3	2.8000A	3.45004	23.318A	V V	28.11mA	1	Page
4	430.0mA	645.0mA	15.58mA	11	20.HimA	4	Finn	. 5	1.1400A	1.7100A	12.63mA	11	15.22mA	1	Pass
.0	300.0mA	450.0mA	9.601mA	11	12.60mA	1	Pane	. 7	770.0mA	1.15504	9:217mA	V V	10.91mA	/	First
	200 DmA	345.0mA	7.275mA	V V	9.305mA	1	Pass	9	400.0mA	600.0mA	7.072mA	11	0.445mA	1	Pass
30	184.066	276.0mA	3.995mA	11	T.422WA	1	Pers	11.	330.0mA	495.0mA	6.094mA	11	7.485mA	1	Peter
12	153.3mA	230.0mA	4.774mA	76/4	6.290mA	1	Pers	- 13	210.0mA	313.0mA	5.228mA	11	6.239mA	1	Pass
14	131.48A	Amt, Tes	4.050mA	PAIA.	5.320mA	1	Para	16	150 0mA	225.0mA	4.659mA	14/4	5.2YZMA	1	F966
16	115.0mA	172.5mA	3.595mA	NA	4.711mA	NA	74/4	tr	132.3mA	196.5mA	4.15 tmA	76/A	4.755mA	NO	NA
18.	102.2YM	553.3mA	3.105mA	N/A	4.201mA	N/A	N/A	19	116.495	177.5mA	3.675mA	NA:	4.234mA	265	N/A
20	92.00mA	138.0mA	2.865mA	NA	3790mA	N/A	N/A	. 21	3\$7.5mA	160.7mA	3-828mA	NA	3.642mA	MIN	N/A
22	83.63MA	125.4mA	2.812mA	N/A	3.410mA	N/A	N/A	25	97.82mA.	146.7mA	3.0126A	74/4	3.474mA	NSA.	N/A
26	75.55mA	115.0mA	2.433mA	NA	3.136mA	NA	74/A	25	90-00mA	135.0mA	2.900mA	N/A	3.580mA	36%	N/A
26	70.75mA	105.1mA	2.225mA	P4/A	2.893mA	NA	N/A	. 27	83.33mA	125 DmA	2.475mA	144	2.568m/s	96/4	N/A
28	65.71mA	98.57mA	2.070mA	PAIA	2.670mA	N/A	NW	29	77.58mA	116.3mA	2.441mA	N/A	2.1023mA	36%	N/A
30	61.33thA	92.00mA	1.942mA	N/A	2.551mA	No	NA	31	72.58mA	108.8mA	2.164thA	N/A	2.662mA	No.	N/A
32	57.50mA	86.25mA	1.831mA	74/4	2.365mA	N/A	NA	33	68 f8nA	102.2mA	2.14 tmX	N/A	2.577mA	N/A	N/A
54	54.11mA	81.17/0A	1.732mA	NA	2.216mA	N/A	N/A	. 36	54.29mA	95.429A	1.964nA	N/A	2.382WA	169	76A
36	51.11mA	76.66mA	1.639mA	1604	2.146mA	14/4	16/4	37	60 61mA	91,21mA	1.899mA	NA:	2.116mA	NA.	NA.
38	45.42YrA	72.63mA	1.569mA	NA.	2.075mA	NA	NA	. 39	57.60mA	56.53mA	3.764nA	14/4	2.006mA	NA.	N/A
40	46 00mA	66.00mA	1.492mA	NA	1.967mA	N/A	N/A					7.00		11107	1000

Lt.: Reading is below limit 1.

^{4.2} Reading is below limit 2.

NIA: Harmonic current below G 6% of rated current or 5mA, whichever is greater, see disregarded.

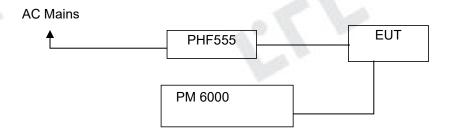
4.4. Voltage fluctuations and flicker

For test instruments and accessories used see section 3.5.

4.4.1. Description of the test location

Test location: Harmonic & Flicker Test Room

4.4.2. Limits of Voltage Fluctuation and Flicker


Test configuration and procedure see clause 5 of standard EN 61000-3-3: 2013+A1: 2019.

4.4.3. Description of the test set-up

4.4.3.1. Operating Condition

The EUT shall operate in the mode of operation described in Section 2.3, and the maximum emanating results are recorded.

4.4.3.2. Configuration of test setup

4.4.4. Test result

The requirements are Fulfilled

Remarks: The limits are kept. For detailed results, please see the following page(s)

40 Report No.: CTL2007312128-E

CTL			2-
Product:	SN-L		2020 Aug 28 16:01
Serial no:			Page 1 of 1
Description:			
Result Name:			
Voltech IEC61000	-3 Windows Software 1.24.12	Test Date:	2020 Aug 28 13:52
Type of Test:	Flickermeter Test - Table		
Power Analyzer:	Voltech PM6000 SN; 200006700717 Firmware Channel(s):	Version: v1.	22.07RC6
	1. SN: 090015502540, 28. Adjusted Date: 20 JUN 2013. 2. SN None	Adjusted Date:N	one
	3 SN None Adjusted Date None 4 SN None Adjusted Date Non		
	5. SN None Adjusted Date None 6. SN None Adjusted Date Non	ne	
	Shurt(t):		
	1 SN 001024303148, 4 Adjusted Date 20 JUN 2013 2 SN None	Adjusted Date No	ne
	3. SN None Adjusted Date None 4. SN None Adjusted Date Non	0	
	5 SN None Adjusted Date None 6 SN None Adjusted Date Non	0	
AC Source:	Mains / Manual Source		
Overall Result	Notes:		
	Pit test duration 120 minutes		
PASS	Measurement method - Voltage		

	Pit	1		
Limit	0.650	1		
Reading	0.474]		
	Pst	dc (%)	dmax (%)	d(t) > 3.3%(ms)
Limit	1.000	3.300	4.000	500
Reading 1	0.483	0.000	0.633	0
Reading 2	0.483	0.000	0.636	0
Reading 3	0.485	0.000	0.638	0
Reading 4	0.484	0.000	0.632	0
Reading 5	0.483	0.000	0.638	0
Reading 6	0.484	0.000	0.632	0
Reading 7	0.482	0.000	0.626	0
Reading 8	0.483	0.000	0.633	0
Reading 9	0.485	0.000	0.630	0
Reading 10	0.484	0.000	0.632	0
Reading 11	0.484	0.000	0.629	0
Reading 12	0.317	0.000	0.629	0

4.5. Electrostatic discharge

For test instruments and accessories used see section 3.5.

4.5.1. Description of the test location and date

Test location: 1# EMC Test Room

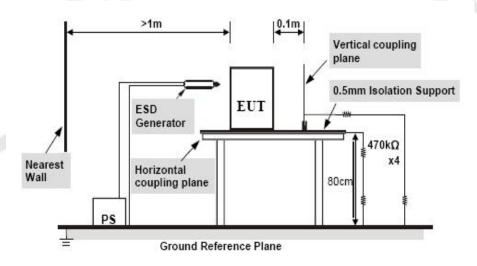
Date of test: Aug. 31, 2020

Operator: Pan

4.5.2. Severity levels of electrostatic discharge

4.5.2.1. Severity level: Contact Discharge at ±4KV Air Discharge at ±8KV

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)		
1	2	2		
2	4	4		
3	6	8		
4	8	15		
X	Special	Special		


4.5.2.2. Performance criterion: B

4.5.3. Description of the test set-up

4.5.3.1. Operating Condition

The EUT shall operate in the mode of operation described in Section 2.3, and the results of the maximum susceptivity are recorded.

4.5.3.2. Test set-up

4.5.4. Test specification:

Contact discharge voltage: ■ 2 kV ■ 4 kV

<u>Air discharge voltage</u>: ■ 2 kV ■ 4 kV ■ 8 kV

Events(every polarity) /per point: ■ 10

Time between events: ■ 1 s

<u>Type of discharge:</u> Direct discharge ■ Air discharge

■ Contact discharge

Indirect discharge ■ Contact discharge

Polarity: ■ Positive ■ Negative

Discharge location:

■ all external locations accessible by hand

■ horizontal coupling plane (HCP)

vertical coupling plane (VCP)

4.5.5. Test result

Environmental conditions	Temperature	24°C
	Humidity	51.0%RH

The requirements are Fulfilled

Performance Criterion: **B**

Remarks: During the test no deviation was detected to the selected operation mode(s).

V1.0 Page 24 of 40 Report No.: CTL2007312128-E

4.6. Electrical fast transients / Burst

For test instruments and accessories used see section 3.5.

4.6.1. Description of the test location and date

Test location: 2# EMC Test Room

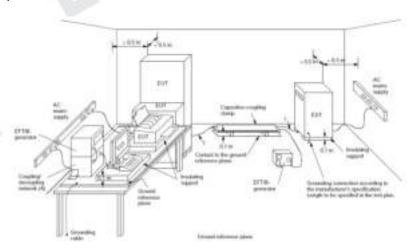
Date of test: Aug. 31, 2020

Operator: Pan

4.6.2. Severity levels of electrical fast transients / Burst

4.6.2.1. Severity level: ±1000V for AC power supply lines

Open circuit output test voltage and repetition rate of the impulses			
On power port, PE			
Level V peak(KV) Repetition		Repetition rate (KHz)	
1.	0.5	5 or 100	
2.	1	5 or 100	
3.	2	5 or 100	
4.	4	5 or 100	
Х	Special	Special	


4.6.2.2. Performance criterion: B

4.6.3. Description of the test set-up

4.6.3.1. Operating Condition

The EUT shall operate in the mode of operation described in Section 2.3, and the results of the maximum susceptive results are recorded.

4.6.3.2. Test set-up

4.6.4. Test specification:

Coupling network: ■ 0.5 kV ■ 1 kV □ 2 kV

Coupling clamp: □ 0.5 kV □ 1 kV

Burst frequency: ■ 5.0 kHz

Coupling duration: ■ 120 s

Polarity: ■ positive ■ negative

4.6.5. Coupling points

Cable description: AC power line : L, N, L+N

Screening:o screened■ unscreenedStatus:o passive■ activeSignal transmission:■ analogueo digital

Length: ■ 0.8 m

4.6.6. Test result

Environmental conditions	Temperature	25℃
	Humidity	55.0%RH

The requirements are **Fulfilled** Performance Criterion: **B**

Remarks: During the test no deviation was detected to the selected operation mode(s).

4.7. Surge

For test instruments and accessories used see section 3.5.

4.7.1. Description of the test location and date

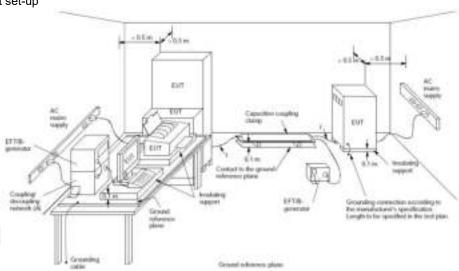
Test location: 2# EMC Test Room

Date of test: Sep. 02, 2020

Operator: Pan

4.7.2. Severity levels of surge

Level	Test Voltage (KV)	
1	0.5	
2	1.0	
3	2.0	
4	4.0	
*	Special	


4.7.2.1. Performance criterion: B

4.7.3. Description of the test set-up

4.7.3.1. Operating Condition

The EUT shall operate in the mode of operation described in Section 2.3, and the results of the maximum susceptive results are recorded.

4.7.3.2. Test set-up

Report No.: CTL2007312128-E

4.7.4. Test specification:

Pulse amplitude-Power line sym.:

■ 0.5 kV ■ 1 kV □ 2 kV

Source impedance: 2 Ω

Source impedance: 12 Ω

Pulse amplitude-Power line unsym:

□ 0.5 kV □ 1 kV

□ 2 kV

□ 4 kV

 \Box 4 kV

Number of surges:

■ 5 Surges/Phase angle

Phase angle:

□ 0° ■ 90°

□ 180 °

■ 270 °

Repetition rate:

■ 60 s

Polarity:

positive

■ negative

4.7.5. Coupling points

Cable description:

AC power line: L+N

Screening:

o screened

unscreened

Status:

o passive

active

Signal transmission: Length: ■ analogue ■ 0.8 m o digital

4.7.6. Test result

Environmental conditions	Temperature	25℃
	Humidity	55.0%RH

The requirements are Fulfilled

Performance Criterion: **B**

Remarks:

During the test no deviation was detected to the selected operation mode(s)

4.8. Conducted disturbances induced by radio-frequency fields

For test instruments and accessories used see section 3.5.

4.8.1. Description of the test location date

Test location: 3# EMC Test Room

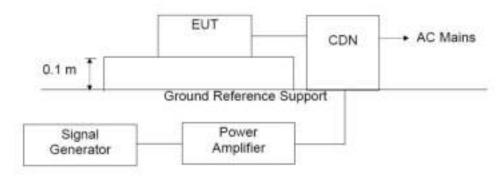
Date of test: Sep. 02, 2020

Operator: Pan

4.8.2. Severity levels of conducted disturbances induced by radio-frequency fields

4.8.2.1. Severity Level: 3V

Level	Field Strength (V)
1.	1
2.	3
3.	10
X	Special


4.8.2.2. Performance criterion: A

4.8.3. Description of the test set-up

4.8.3.1. Operating Condition

The EUT shall operate in the mode of operation described in Section 2.3, and the results of the maximum susceptive results are recorded.

4.8.3.2. Test set-up

4.8.4. Test specification:

Frequency range: ■ 0.15 MHz to 230 MHz

<u>Test voltage:</u> ■ 3 V

Modulation: ■ AM: 80 %

■ sinusoidal 1000Hz

Frequency step: ■ 1 % with 1 s dwell time

V1.0 Page 29 of 40 Report No.: CTL2007312128-E

4.8.5. Coupling points

Cable description (Port1): AC power line

Screening:o screened■ unscreenedStatus:o passive■ activeSignal transmission:■ analogueo digital

Length: ■ 0.8 m

4.8.6. Test result

Environmental	Temperature	25°C
conditions	Humidity	55.0%RH

The requirements are **Fulfilled** Performance Criterion: **A**

Remarks: During the test no deviation was detected to the selected operation mode(s).

V1.0 Page 30 of 40 Report No.: CTL2007312128-E

4.9. Voltage dips and short interruptions

For test instruments and accessories used see section 3.5.

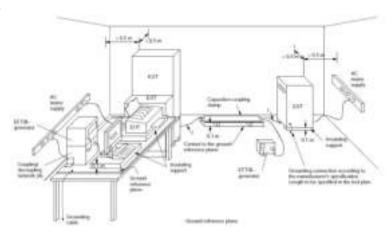
4.9.1. Description of the test location and date

Test location: 2# EMC Test Room

Date of test: Sep. 02, 2020

Operator: Pan

4.9.2. Severity levels of voltage Dips and Interruptions


Test Level (%Ut)	Voltage Dip And Short Interruptions (%Ut)	Performance Criterion	Duration (In Period)
0	100	С	0.5
70	30	С	25
40	60	С	10

4.9.3. Description of the test set-up

4.9.3.1. Operating Condition

The EUT shall operate in the mode of operation described in Section 2.3, and the results of the maximum susceptive results are recorded.

4.9.3.2. Test set-up

4.9.4. Test specification:

Nominal Mains Voltage (V_N): ■ 230 V AC

Number of voltage fluctuations: ■ 3

<u>Level of reduction(dip) / duration:</u> ■ 100 % / 10ms ■ 30 % / 500ms ■ 60 % / 200ms

4.9.5. Test result

Environmental conditions	Temperature	25℃
	Humidity	55.0%RH

The requirements are Fulfilled

Performance Criterion :C

Remarks: During the test no deviation was detected to the selected operation mode(s).

5. Test Setup Photos

DISTURBANCE POWER TEST

CONDUCTION EMISSION TEST(0.15MHz-30MHz)

HARMONIC & FLICKER TEST

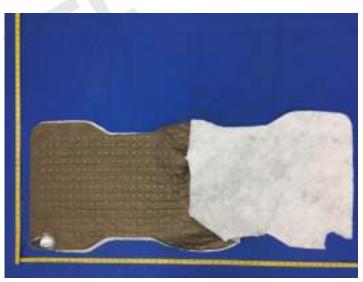
ESD TEST

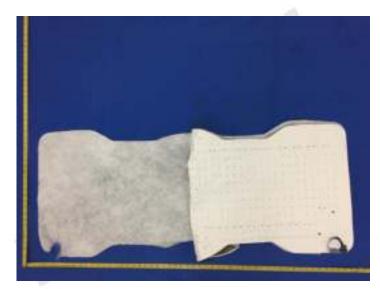
EFT TEST&SURGE TEST&VOLTAGE DIPS AND INTERRUPTIONS TEST

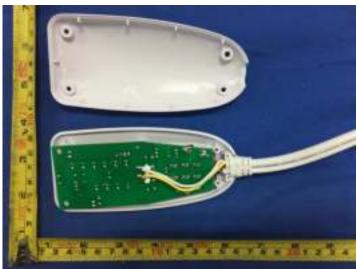
CONDUCTED SUSCEPTIBILITY TEST

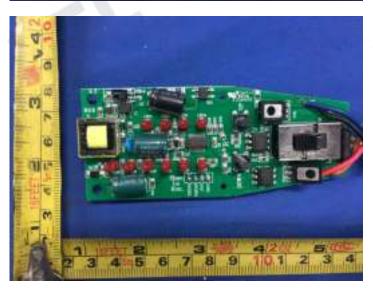
V1.0 Page 33 of 40 Report No.: CTL2007312128-E

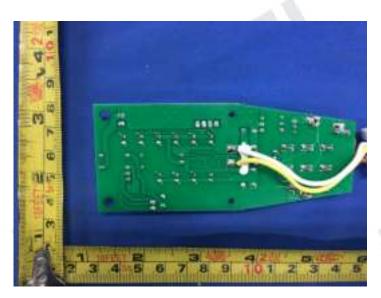
6. Photos of the EUT











FT-01A, 50W

FT-1616, 50W

FT-3016, 120W

HB-L, 50W

SN-S, 60W

TK-HP1612, 50W

TK-HP1616, 50W

TK-HP2412, 75W

TK-HP3016, 120WEnd of Report.....